
4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Module 11: Using Table Expressions

Contents:

Module Overview

Lesson 1: Using Views

Lesson 2: Using Inline TVFs

Lesson 3: Using Derived Tables

Lesson 4: Using CTEs

Lab: Using Table Expressions

Module Review and Takeaways

Module Overview

Previously in this course, you learned about using subqueries as an expression that
returned results to an outer calling query. Like subqueries, table expressions are
query expressions, but table expressions extend this idea by allowing you to name
them and work with the results as you would with data in any valid relational table.
Microsoft® SQL Server® 2016 supports four types of table expressions: derived
tables, common table expressions (CTEs), views, and inline table-valued functions
(TVFs). In this module, you will learn to work with these forms of table expressions
and how to use them to help create a modular approach to writing queries.

Objectives

After completing this module, you will be able to:

• Create simple views and write queries against them.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Create simple inline TVFs and write queries against them.

• Write queries that use derived tables.

• Write queries that use CTEs.

Note: Some of the examples used in this module have been adapted from
samples published in Microsoft SQL Server 2008 T-SQL Fundamentals
(Microsoft Press 2009).

Lesson 1: Using Views

The lifespans of some table expressions are limited to the query in which they are
defined and invoked. Views and TVFs, however, can be persistently stored in a
database and reused. A view is a table expression whose definition is stored in a
SQL Server database. Like derived tables and CTEs, views are defined with SELECT
statements. This provides not only the benefits of modularity and encapsulation
possible with derived table and CTEs, but also adds reusability, in addition to extra
security beyond that provided with query-scoped table expressions.

Lesson Objectives
After completing this lesson, you will be able to:

• Write queries that return results from views.

• Create simple views.

Writing Queries That Return Results from Views

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

A view is a named table expression whose definition is stored as metadata in a SQL
Server database. Views can be used as a source for queries in much the same way
as tables themselves. However, views do not persistently store data; the definition of
the view is unpacked at runtime and the source objects are queried.

Note: In an indexed view, data is materialized in the view. Indexed views are
beyond the scope of this course.

Querying a View Syntax

SELECT <select_list>

FROM <view_name>

ORDER BY <sort_list>;

Note that an ORDER BY clause is used in this sample syntax to emphasize the point
that, as a table expression, there is no sort order included in the definition of a view.
This will be discussed later in this lesson.

Querying a View Example

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 4/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SELECT custid, ordermonth, qty

FROM Sales.CustOrders;

The partial results are indistinguishable from any other table-based query:

custid ordermonth qty

7 2006-07-01 00:00:00.000 50

13 2006-07-01 00:00:00.000 11

14 2006-07-01 00:00:00.000 57

The apparent similarity between a table and a view provides an important benefit—an
application can be written to use views instead of the underlying tables, shielding the
application from changes to the tables. Providing the view continues to present the
same structure to the calling application, the application will receive consistent
results. Views can be considered an application programming interface (API) to a
database for purposes of retrieving data.

Administrators can also use views as a security layer, granting users permissions to
select from a view without providing permissions on the underlying source tables.

Additional Reading: For more information on database security, go to course
20764C: Administering a SQL Database Infrastructure.

Creating Simple Views

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

To use a view in your queries, it must be created by a database developer or
administrator with appropriate permission in the database. While coverage of
database security is beyond the scope of this course, you will have permission to
create views in the lab database.

To store a view definition, use the CREATE VIEW T-SQL statement to name and
store a single SELECT statement. Note that the ORDER BY clause is not permitted
in a view definition unless the view uses a TOP, OFFSET/FETCH, or FOR XML
element.

CREATE VIEW Syntax

CREATE VIEW <schema_name.view_name> [<column_alias_list>]

[WITH <view_options>]

AS select_statement;

Note: This lesson covers the basics of creating views for the purposes of
discussion about querying them only. For more information on views and view
options, go to course 20762B: Developing Microsoft SQL Server Databases.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 6/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

CREATE VIEW Example

CREATE VIEW Sales.CustOrders

AS

SELECT

 O.custid,

 DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0) AS ordermonth,

 SUM(OD.qty) AS qty

FROM Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

GROUP BY custid, DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0);

You can query system metadata by querying system catalog views such as
sys.views, which you will learn about in a later module.

Querying a View Example

SELECT custid, ordermonth, qty

FROM Sales.CustOrders;

Demonstration: Using Views
In this demonstration, you will see how to create views.

Demonstration Steps

Create Views

1. Ensure that the 20761C-MIA-DC and 20761C-MIA-SQL virtual machines are
both running, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod11\Setup.cmd as an administrator.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, press Enter, and then wait for the script to
finish.

5. Start SQL Server Management Studio and connect to the MIA-SQL database
engine instance using Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod11\Demo folder.

7. Open the 11 - Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Discovery
Your DBAs want to grant access to Sales users on the Customers table in the Sales
database. However, they also need to prevent Sales users from reading values in the
Customers.Relationship column. How can they set up this access?

Show solution Reset

Lesson 2: Using Inline TVFs

An inline TVF is a form of table expression with several properties in common with
views. Like a view, the definition of a TVF is stored as a persistent object in a
database. Also like a view, an inline TVF encapsulates a single SELECT statement,
returning a virtual table to the calling query. A primary distinction between a view and
an inline TVF is that the latter can accept input parameters and refer to them in the
embedded SELECT statement.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

In this lesson, you will learn how to create basic inline TVFs and write queries that
return results from them.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe the structure and usage of inline TVFs.

• Use the CREATE FUNCTION statement to create simple inline TVFs.

• Write queries that return results from inline TVFs.

Writing Queries That Use Inline TVFs

Inline TVFs are named table expressions whose definitions are stored persistently in
a database that can be queried in much the same way as a view. This enables reuse
and centralized management of code in a way that is not possible for derived tables
and CTEs as query-scoped table expressions.

Note: SQL Server supports several types of user-defined functions. In
addition to inline TVFs, users can create scalar functions, multi-statement

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

TVFs, and functions written in the .NET Common Language Runtime (CLR).
For more information on these functions, go to course 20762B: Developing
Microsoft SQL Server Databases.

One of the key distinctions between views and inline TVFs is that the latter can
accept input parameters. Therefore, you may think of inline TVFs conceptually as
parameterized views and choose to use them in place of views when flexibility of
input is preferred.

Additional reading can be found in Microsoft Docs:

CREATE FUNCTION (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402772

Creating Simple Inline TVFs

To use inline TVFs in your queries, they must be created by a database developer or
administrator with appropriate permission in the database. While coverage of
database security is beyond the scope of this course, you will have permission to
create TVFs in the lab database.

http://go.microsoft.com/fwlink/?LinkID=402772

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

To store an inline TVF view definition:

• Use the CREATE FUNCTION T-SQL statement to name and store a single
SELECT statement with optional parameters.

• Use RETURNS TABLE to identify this function as a TVF.

• Enclose the SELECT statement inside parentheses following the RETURN
keyword to make this an inline function.

CREATE FUNCTION Syntax for Inline Table-Valued Functions

CREATE FUNCTION <schema.name>

(@<parameter_name> AS <data_type>, ...)

RETURNS TABLE

AS

RETURN (<SELECT_expression>);

Inline Table-Valued Function Example

CREATE FUNCTION Production.TopNProducts

(@t AS INT)

RETURNS TABLE

AS

RETURN

 (SELECT TOP (@t) productid, productname, unitprice

 FROM Production.Products

 ORDER BY unitprice DESC);

Retrieving from Inline TVFs

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

After creating an inline TVF, you can invoke it by selecting from it, as you would a
view. If there is an argument, you need to enclose it in parentheses. Multiple
arguments need to be separated by commas.

Querying an Inline TVF

SELECT * FROM Production.TopNProducts(3)

The results:

productid productname unitprice

38 Product QDOMO 263.50

29 Product VJXYN 123.79

9 Product AOZBW 97.00

(3 row(s) affected)

Note: You use a two-part name when calling a user-defined function.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Demonstration: Inline TVFs
In this demonstration, you will see how to create inline TVFs.

Demonstration Steps

Create Inline TVFs

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Select the best answer
From the following statements, select the one that is true of TVFs but not true of Views.

Stored persistently in the database.

Can accept input parameters.

Can be referred to in a FROM clause, like a table.

Does not store data in the database but queries the database whenever it is called.

Check answer Show solution Reset

Lesson 3: Using Derived Tables

In this lesson, you will learn how to write queries that create derived tables in the
FROM clause of an outer query. You will also learn how to return results from the
table expression defined in the derived table.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Lesson Objectives
After completing this lesson, you will be able to:

• Write queries that create and retrieve results from derived tables.

• Describe how to provide aliases for column names in derived tables.

• Pass arguments to derived tables.

• Describe nesting and reuse behavior in derived tables.

Writing Queries with Derived Tables

Earlier in this course, you learned about subqueries, which are queries nested within
other SELECT statements. Like subqueries, you create derived tables in the FROM
clause of an outer SELECT statement. Unlike subqueries, you write derived tables
using a named expression that is logically equivalent to a table and may be
referenced as a table elsewhere in the outer query. Derived tables allow you to write
T-SQL statements that are more modular, helping you break down complex queries
into more manageable parts. Using derived tables in your queries can also provide

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

workarounds for some of the restrictions imposed by the logical order of query
processing, such as the use of column aliases.

Derived Table Syntax

SELECT <outer query column list>

FROM (SELECT <inner query column list>

 FROM <table source>) AS <derived table alias>

The following example uses a derived table to retrieve information about orders
placed per year by distinct customers. The inner query builds a set of orders and
places it into the derived table’s derived year. The outer query operates on the
derived table and summarizes the results.

Derived Table Example

SELECT orderyear, COUNT(DISTINCT custid) AS cust_count

FROM (SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders) AS derived_year

GROUP BY orderyear;

The results:

orderyear cust_count

2006 67

2007 86

2008 81

(3 row(s) affected)

When writing queries that use derived tables, consider the following:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Derived tables are not stored in the database. Therefore, no special security
privileges are required to write queries using derived tables, other than the rights
to select from the source objects.

• A derived table is created at the time of execution of the outer query and goes out
of scope when the outer query ends.

• Derived tables do not necessarily have an impact on performance, compared to
the same query expressed differently. When the query is processed, the statement
is unpacked and evaluated against the underlying database objects.

Guidelines for Derived Tables

When writing queries that use derived tables, keep the following guidelines in mind:

• The nested SELECT statement that defines the derived table must have an alias
assigned to it. The outer query will use the alias in its SELECT statement in much
the same way you refer to aliased tables joined in a FROM clause.

• All columns referenced in the derived table's SELECT clause should be assigned
aliases, a best practice that is not always required in T-SQL. Each alias must be

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

unique within the expression. The column aliases may be declared inline with the
columns or externally to the clause. You will see examples of this in the next topic.

• The SELECT statement that defines the derived table expression may not use an
ORDER BY clause, unless it also includes a TOP operator, an OFFSET/FETCH
clause, or a FOR XML clause. As a result, there is no sort order provided by the
derived table. You sort the results in the outer query.

• The SELECT statement that defines the derived table may be written to accept
arguments in the form of local variables. If the SELECT statement is embedded in
a stored procedure, the arguments may be written as parameters for the
procedure. You will see examples of this later in the module.

• Derived table expressions that are nested within an outer query can contain other
derived table expressions. Nesting is permitted, but it is not recommended due to
increased complexity and reduced readability.

• A derived table may not be referred to multiple times within an outer query. If you
need to manipulate the same results, you will need to define the derived table
expression every time, such as on each side of a JOIN operator.

Note: You will see examples of multiple usage of the same derived table
expression in a query in the demonstration for this lesson.

Using Aliases for Column Names in Derived Tables

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

To create aliases, you can use one of two methods—inline or external.

Alias Syntax

SELECT <outer query column list>

FROM (SELECT <col1> AS <alias>, <col2> AS <alias>...

 FROM <table_source>);

Alias Example

SELECT orderyear, COUNT(DISTINCT custid) AS cust_count

FROM (SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders) AS derived_year

GROUP BY orderyear;

A partial result for the inner query displays the following:

orderyear custid

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 18/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

orderyear custid2006 85

2006 79

2006 34

The inner results are passed to the outer query, which operates on the derived table's
orderyear and custid columns:

orderyear cust_count

2006 67

2007 86

2008 81

Declared Aliases with Derived Tables Syntax

SELECT <outer query column list>

FROM (SELECT <col1>, <col2>..

 FROM <table_source>) AS <derived_table_alias>(<col1_alias>,

<col2_alias>);

Declared Aliases with Derived Tables Example

SELECT orderyear, COUNT(DISTINCT custid) AS cust_count

FROM (SELECT YEAR(orderdate), custid

 FROM Sales.Orders) AS derived_year(orderyear, custid)

GROUP BY orderyear;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note: When using external aliases, if the inner query is executed separately,
the aliases will not be returned to the outer query. For ease of testing and
readability, it is recommended that you use inline rather than external aliases.

Passing Arguments to Derived Tables

Derived tables in SQL Server can accept arguments passed in from a calling routine,
such as a T-SQL batch, function, or a stored procedure. Derived tables can be written
with local variables serving as placeholders in their code. At runtime, the
placeholders can be replaced with values supplied in the batch or with values passed
as parameters to the stored procedure that invoked the query. This will allow your
code to be reused more flexibly than rewriting the same query with different values
each time.

Note: The use of parameters in functions and stored procedures will be
covered later in this course. This lesson focuses on writing table expressions
that can accept arguments.

Passing Arguments to Derived Tables

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

DECLARE @emp_id INT = 9; --declare and assign the variable

SELECT orderyear, COUNT(DISTINCT custid) AS cust_count

FROM (

 SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

 WHERE empid=@emp_id --use the variable to pass a value to

the derived table query

) AS derived_year

GROUP BY orderyear;

GO

The results:

orderyear cust_count

2006 5

2007 16

2008 16

(3 row(s) affected)

Note: You will learn more about declaring variables, executing T-SQL code in
batches, and working with stored procedures later in this class.

Nesting and Reusing Derived Tables

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 21/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Since a derived table is itself a complete query expression, that query can refer to a
derived table expression. This creates a nesting scenario, which while possible, is not
recommended for reasons of code maintenance and readability.

Nested Derived Tables

SELECT orderyear, cust_count

FROM (

 SELECT orderyear, COUNT(DISTINCT custid) AS cust_count

 FROM (

 SELECT YEAR(orderdate) AS orderyear ,custid

 FROM Sales.Orders) AS derived_table_1

 GROUP BY orderyear) AS derived_table_2

WHERE cust_count > 80;

Logically, the innermost query is processed first, returning these partial results as
derived_table_1:

orderyear custid

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 22/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

orderyear custid
2006 85

2006 79

2006 34

Next, the middle query runs, grouping and aggregating the results into
derived_table_2:

orderyear cust_count

2006 67

2007 86

2008 81

Finally, the outer query runs, filtering the output:

orderyear cust_count

2007 86

2008 81

As you can see, while is possible to nest derived tables, it does add complexity.

While nesting derived tables is possible, references to the same derived table from
multiple clauses of an outer query can be challenging. Since the table expression is
defined in the FROM clause, subsequent phases of the query can see it, but it cannot
be referenced elsewhere in the same FROM clause.

For example, a derived table defined in a FROM clause may be referenced in a
WHERE clause, but not in a JOIN in the same FROM clause that defines it. The
derived table must be defined separately, and multiple copies of the code maintained.
For an alternative approach that allows reuse without maintaining separate copies of
the derived table definition, see the CTE discussion later in this module.

Question: How could you rewrite the previous example to eliminate one level of
nesting?

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 23/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Demonstration: Using Derived Tables
In this demonstration, you will see how to write queries that create derived tables.

Demonstration Steps

Write Queries that Create Derived Tables

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Discovery
You are troubleshooting the following query, which returns an error:
SELECT orderyear, COUNT(DISTINCT custid) AS cust_count
FROM (
 SELECT YEAR(orderdate) AS orderyear, custid
 FROM Sales.Orders
 WHERE empid = 354
 ORDER BY YEAR(orderdate)
) AS derived_year
GROUP BY orderyear;
How can you resolve the error?

Show solution Reset

Lesson 4: Using CTEs

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 24/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Another form of table expression provided by SQL Server is the CTE. Similar in some
ways to derived tables, CTEs provide a mechanism for defining a subquery that may
then be used elsewhere in a query. Unlike a derived table, a CTE is defined at the
beginning of a query and may be referenced multiple times in the outer query.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe the use of CTEs.

• Write queries that create CTEs and return results from the table expression.

• Describe how a CTE can be reused multiple times by the same outer query.

Writing Queries with CTEs

CTEs are named expressions defined in a query. Like subqueries and derived tables,
CTEs provide a means to break down query problems into smaller, more modular
units.

When writing queries with CTEs, consider the following guidelines:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 25/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Like derived tables, CTEs are limited in scope to the execution of the outer query.
When the outer query ends, so does the CTE's lifetime.

• CTEs require a name for the table expression, in addition to unique names for
each of the columns referenced in the CTE's SELECT clause.

• CTEs may use inline or external aliases for columns.

• Unlike a derived table, a CTE may be referenced multiple times in the same query
with one definition. Multiple CTEs may also be defined in the same WITH clause.

• CTEs support recursion, in which the expression is defined with a reference to
itself. Recursive CTEs are beyond the scope of this course.

For additional reading on recursive CTEs, see the SQL Server Technical
Documentation:

Recursive Queries Using Common Table Expressions

http://go.microsoft.com/fwlink/?LinkID=402773

Creating Queries with Common Table Expressions

http://go.microsoft.com/fwlink/?LinkID=402773

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 26/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

CTE Syntax

WITH <CTE_name>

AS (<CTE_definition>)

CTE Example

WITH CTE_year --name the CTE

AS -- define the subquery

(

 SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

)

SELECT orderyear, COUNT(DISTINCT custid) AS cust_count

FROM CTE_year --reference the CTE in the outer query

GROUP BY orderyear;

The results:

orderyear cust_count

2006 67

2007 86

2008 81

(3 row(s) affected)

Demonstration: Using CTEs
In this demonstration, you will see how to write queries that create CTEs.

Demonstration Steps

Write Queries that Create CTEs

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 27/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

1. In Solution Explorer, open the 41 - Demonstration D.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Select the best answer
Which of the following features is required for a CTE query?

The query must have a WITH … AS clause.

The query must include a GROUP BY clause.

The query must include a CREATE FUNCTION statement.

The query must include a nested derived query.

Check answer Show solution Reset

Lab: Using Table Expressions

Scenario

As a business analyst for Adventure Works, you will be writing reports using
corporate databases stored in SQL Server. You have been given a set of business
requirements for data and you will write T-SQL queries to retrieve the specified data
from the databases. Because of advanced business requests, you will have to learn
how to create and query different query expressions that represent a valid relational
table.

Objectives

After completing this lab, you will be able to:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 28/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Write queries that use views.

• Write queries that use derived tables.

• Write queries that use CTEs.

• Write queries that use inline TVFs.

Lab Setup

Estimated Time: 90 minutes

Virtual machine: 20761C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa55w.rd

Exercise 1: Writing Queries That Use Views

Scenario

In the last 10 modules, you had to prepare many different T-SQL statements to
support different business requirements. Because some of them used a similar table
and column structure, you would like to have them reusable. You will learn how to
use one of two persistent table expressions—a view.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve All Products for a Specific Category

3. Write a SELECT Statement Against the Created View

4. Try to Use an ORDER BY Clause in the Created View

5. Add a Calculated Column to the View

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 29/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

6. Remove the Production.ProductsBeverages View

Result: After this exercise, you should know how to use a view in T-SQL
statements.

Exercise 2: Writing Queries That Use Derived Tables

Scenario

The sales department would like to compare the sales amounts between the ordered
year and the previous year to calculate the growth percentage. To prepare such a
report, you will learn how to use derived tables inside T-SQL statements.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement Against a Derived Table

2. Write a SELECT Statement to Calculate the Total and Average Sales Amount

3. Write a SELECT Statement to Retrieve the Sales Growth Percentage

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 30/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should be able to use derived tables in T-SQL
statements.

Exercise 3: Writing Queries That Use CTEs

Scenario

The sales department needs an additional report showing the sales growth over the
years for each customer. You could use your existing knowledge of derived tables
and views, but instead you will practice how to use a CTE.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement That Uses a CTE

2. Write a SELECT Statement to Retrieve the Total Sales Amount for Each
Customer

3. Write a SELECT Statement to Compare the Total Sales Amount for Each
Customer Over the Previous Year

Result: After this exercise, you should have an understanding of how to use a
CTE in a T-SQL statement.

Exercise 4: Writing Queries That Use Inline TVFs

Scenario

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 31/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

You have learned how to write a SELECT statement against a view. However, since a
view does not support parameters, you will now use an inline TVF to retrieve data as
a relational table based on an input parameter.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Total Sales Amount for Each
Customer

2. Write a SELECT Statement Against the Inline TVF

3. Write a SELECT Statement to Retrieve the Top Three Products Based on the
Total Sales Value for a Specific Customer

4. Using Inline TVFs, Write a SELECT Statement to Compare the Total Sales
Amount for Each Customer Over the Previous Year

5. Remove the Created Inline TVFs

Result: After this exercise, you should know how to use inline TVFs in T-SQL
statements.

Module Review and Takeaways

In this module, you have learned how to:

• Create simple views and write queries against them.

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 32/32

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Create simple inline TVFs and write queries against them.

• Write queries that use derived tables.

• Write queries that use CTEs.

Review Question(s)

Check Your Knowledge

Discovery
When would you use a CTE rather than a derived table for a query?

Show solution Reset

Check Your Knowledge

Discovery
Which table expressions allow variables to be passed in as parameters to the
expression?

Show solution Reset

