
4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Module 13: Using Window Ranking, Offset, and
Aggregate Functions

Contents:

Module Overview

Lesson 1: Creating Windows with OVER

Lesson 2: Exploring Window Functions

Lab: Using Window Ranking, Offset, and Aggregate Functions

Module Review and Takeaways

Module Overview

Microsoft® SQL Server® implements support for SQL windowing operations, which
means you can define a set of rows and apply several different functions against
those rows. After you have learned how to work with windows and window functions,
you might find that some types of queries that appeared to require complex
manipulations of data (for example, self-joins, temporary tables, and other constructs)
aren't needed to write your reports.

Objectives

After completing this module, you will be able to:

• Describe the benefits of using window functions.

• Restrict window functions to rows defined in an OVER clause, including partitions
and frames.

• Write queries that use window functions to operate on a window of rows and

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

return ranking, aggregation, and offset comparison results.

Lesson 1: Creating Windows with OVER

SQL Server provides a number of window functions, which perform calculations such
as ranking, aggregations, and offset comparisons between rows. To use these
functions, you will need to write queries that define windows, or sets, of rows. You will
use the OVER clause and its related elements to define the sets for the window
functions.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe the T-SQL components used to define windows, and the relationships
between them.

• Write queries that use the OVER clause, with partitioning, ordering, and framing to
define windows.

SQL Windowing

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SQL Server provides windows as a method for applying functions to sets of rows.
There are many applications of this technique that solve common problems in writing
T-SQL queries. For example, using windows allows the easy generation of row
numbers in a result set and the calculation of running totals. Windows also provide an
efficient way to compare values in one row with values in another without needing to
join a table to itself using an inequality operator.

There are several core elements of writing queries that use windows:

1. Windows allow you to specify an order to rows that will be passed to a window
function, without affecting the final order of the query output.

2. Windows include a partitioning feature, which enables you to specify that you
want to restrict a function only to rows that have the same value as the current
row.

3. Windows provide a framing option. It allows you to specify a further subset of
rows within a window partition by setting upper and lower boundaries for the
window frame, which presents rows to the window function.

Running Total Example

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 4/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SELECT Category, Qty, Orderyear,

 SUM(Qty) OVER (PARTITION BY Category ORDER BY Orderyear

 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS

RunningQty

FROM Sales.CategoryQtyYear;

The partial results:

Category Qty Orderyear RunningQty

--------------- ----- ---------- -----------

Beverages 1842 2006 1842

Beverages 3996 2007 5838

Beverages 3694 2008 9532

Condiments 962 2006 962

Condiments 2895 2007 3857

Condiments 1441 2008 5298

Confections 1357 2006 1357

Confections 4137 2007 5494

Confections 2412 2008 7906

Dairy Products 2086 2006 2086

Dairy Products 4374 2007 6460

Dairy Products 2689 2008 9149

During the next few topics of this lesson, you will learn how to use these query
elements.

Windowing Components

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

In order to use windows and window functions in T-SQL, you will always use one of
the subclauses that create and manipulate windows—the OVER subclause.
Additionally, you may need to create partitions with the PARTITION BY option, and
even further restrict which rows are applied to a function with framing options.
Therefore, understanding the relationship between these components is vital.

The general relationship can be expressed as a sequence, with one element further
manipulating the rows output by the previous element:

1. The OVER clause determines the result set that will be used by the window
function. An OVER clause with no partition defined is unrestricted. It returns all
rows to the function.

2. A PARTITION BY clause, if present, restricts the results to those rows with the
same value in the partitioned columns as the current row. For example,
PARTITION BY custid restricts the window to rows with the same custid as the
current row. PARTITION BY builds on the OVER clause and cannot be used
without OVER. (An OVER clause without a window partition clause is
considered one partition).

3. A ROW or RANGE clause creates a window frame within the window partition,
which allows you to set a starting and ending boundary around the rows being

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 6/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

operated on. A frame requires an ORDER BY subclause within the OVER
clause.

Windowing Example

SELECT Category, Qty, Orderyear,

 SUM(Qty) OVER (PARTITION BY category ORDER BY Orderyear

 ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS

RunningQty

FROM Sales.CategoryQtyYear;

The details of each component will be covered in future topics.

Note: A single query can use multiple window functions, each with its own
OVER clause. Each clause determines its own partitioning, ordering, and
framing.

Using OVER

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

The OVER clause defines the window, or set, of rows that will be operated on by a
window function, which we will look at in the next lesson. The OVER clause includes
partitioning, ordering, and framing, where each is applicable.

Used alone, the OVER clause does not restrict the result set passed to the window
function. Used with a PARTITION BY subclause, OVER restricts the set to those
rows with the same values in the partitioning elements.

OVER Example

SELECT Category, Qty, Orderyear,

 ROW_NUMBER() OVER (ORDER BY Qty DESC) AS Running

FROM Sales.CategoryQtyYear

ORDER BY Running;

The partial result, further ordered by the Running column for display purposes:

Category Qty Orderyear Running

--------------- ----------- ----------- --

Dairy Products 4374 2007 1

Confections 4137 2007 2

Beverages 3996 2007 3

Beverages 3694 2008 4

Seafood 3679 2007 5

Condiments 2895 2007 6

Seafood 2716 2008 7

Dairy Products 2689 2008 8

Grains/Cereals 2636 2007 9

The next topics will build on this basic use of OVER to define a window of rows.

For further reading on the OVER clause, see Microsoft Docs:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

OVER Clause (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402778

Partitioning Windows

Partitioning a window limits a set to rows with the same value in the partitioning
column.

PARTITION BY Code Snippet

<function_name>() OVER(PARTITION BY Category)

As you have learned, if no partition is defined, then the OVER() clause returns all
rows from the underlying query's result set to the window function.

PARTITION BY Example

SELECT Category, Qty, Orderyear,

ROW NUMBER() OVER (PARTITION BY Category ORDER BY Qty DESC)

http://go.microsoft.com/fwlink/?LinkID=402778

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

 ROW_NUMBER() OVER (PARTITION BY Category ORDER BY Qty DESC)

AS Running

FROM Sales.CategoryQtyYear

ORDER BY Category;

The partial result:

Category Qty Orderyear Running

--------------- ----------- ----------- ---

Beverages 3996 2007 1

Beverages 3694 2008 2

Beverages 1842 2006 3

Condiments 2895 2007 1

Condiments 1441 2008 2

Condiments 962 2006 3

Confections 4137 2007 1

Confections 2412 2008 2

Confections 1357 2006 3

Note: If you intend to add framing to the window partition, an ORDER BY
subclause will also be needed in the OVER clause, as discussed in the next
topic.

Ordering and Framing

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

As you have learned, you use window partitions to define a subset of rows within the
outer window defined by OVER. In a similar approach, window framing allows you to
further restrict the rows available to the window function. You can think of a frame as
a moving window over the data, starting and ending at positions you define.

To define window frames, use the ROW or RANGE subclauses to provide a starting
and an ending boundary. For example, to set a frame that extends from the first row
in the partition to the current row (such as to create a moving window for a running
total), follow these steps:

1. Define an OVER clause with a PARTITION BY element.

2. Define an ORDER BY subclause to the OVER clause. This will cause the
concept of "first row" to be meaningful.

3. Add the ROWS BETWEEN subclause, setting the starting boundary using
UNBOUNDED PRECEDING. UNBOUNDED means go all the way to the
boundary in the direction specified as PRECEDING (before). Add the
CURRENT ROW element to indicate the ending boundary is the row being
calculated.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note: Since OVER returns a set, and sets have no order, an ORDER BY
subclause is required for the framing operation to be useful. This can be (and
typically is) different from ORDER BY, which determines the display order for
the final result set.

Framing Example

SELECT Category, Qty, Orderyear,

 SUM(Qty) OVER (PARTITION BY Category ORDER BY Orderyear

 ROWS BETWEEN UNBOUNDED PRECEDING

 AND CURRENT ROW) AS RunningQty

FROM Sales.CategoryQtyYear;

The partial results:

Category Qty Orderyear RunningQty

--------------- ----------- ----------- -----------

Beverages 1842 2006 1842

Beverages 3996 2007 5838

Beverages 3694 2008 9532

Condiments 962 2006 962

Condiments 2895 2007 3857

Condiments 1441 2008 5298

Confections 1357 2006 1357

Confections 4137 2007 5494

Confections 2412 2008 7906

Dairy Products 2086 2006 2086

Dairy Products 4374 2007 6460

Dairy Products 2689 2008 9149

Demonstration: Using OVER and Partitioning

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

In this demonstration, you will see how to use OVER, PARTITION BY, and ORDER
BY clauses.

Demonstration Steps

Use OVER, PARTITION BY, and ORDER BY Clauses

1. Ensure that the 20761C-MIA-DC and 20761C-MIA-SQL virtual machines are
both running, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod13\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter.

5. Wait for the script to finish, and then press any key.

6. Start SQL Server Management Studio and connect to the MIA-SQL database
engine instance using Windows authentication.

7. Open the Demo.ssmssln solution in the D:\Demofiles\Mod13\Demo folder.

8. In Solution Explorer, open the 11 - Demonstration A.sql script file.

9. Select the code under the comment Step 1, and then click Execute.

10. Select the code under the comment Step 2, and then click Execute.

11. Select the code under the comment Step 3, and then click Execute.

12. Select the code under the comment Step 4, and then click Execute.

13. Select the code under the comment Step 5, and then click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Sequencing Activity

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Put the following elements into the logical order in which they are processed in a
windowed query by numbering each to indicate the correct order.

Check answer Show solution Reset

Lesson 2: Exploring Window Functions

SQL Server provides window functions to operate on a window of rows. In addition to
window aggregate functions, which you will find to be conceptually similar to grouped
aggregate functions, you can use window ranking, distribution, and offset functions in
your queries.

Lesson Objectives
After completing this lesson, you will be able to:

• Write queries that use window aggregate functions.

• Write queries that use window ranking functions.

• Write queries that use window offset functions.

Defining Window Functions

The ROW or RANGE clause

The PARTITION BY clause

The OVER clause

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

A window function is applied to a window, or set, of rows. Earlier in this course, you
learned about group aggregate functions such as SUM, MIN, and MAX, which
operated on a set of rows defined by a GROUP BY clause. In window operations,
you can use these functions, in addition to others, to operate on a set of rows defined
in a window by an OVER clause and its elements.

SQL Server window functions can be found in the following categories, which will be
discussed in the next topics:

• Aggregate functions, such as SUM, which operate on a window and return a
single row.

• Ranking functions, such as RANK, which depend on a sort order and return a
value representing the rank of a row, with respect to other rows in the window.

• Distribution functions, such as CUME_DIST, which calculate the distribution of a
value in a window of rows.

• Offset functions, such as LEAD, which return values from other rows relative to the
position of the current row.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

When used in windowing scenarios, these functions depend on the result set
returned by the OVER clause and any further restrictions you provide within OVER,
such as partitioning and framing.

RANK Example

SELECT productid, productname, unitprice,

 RANK() OVER(ORDER BY unitprice DESC) AS pricerank

FROM Production.Products

ORDER BY pricerank;

The partial result:

productid productname unitprice pricerank

----------- ------------- --------------------- ---------

38 Product QDOMO 263.50 1

29 Product VJXYN 123.79 2

9 Product AOZBW 97.00 3

20 Product QHFFP 81.00 4

18 Product CKEDC 62.50 5

59 Product UKXRI 55.00 6

51 Product APITJ 53.00 7

62 Product WUXYK 49.30 8

43 Product ZZZHR 46.00 9

28 Product OFBNT 45.60 10

27 Product SMIOH 43.90 11

63 Product ICKNK 43.90 11

8 Product WVJFP 40.00 13

RANK with PARTITION Example

SELECT categoryid, productid, unitprice,

 RANK() OVER(PARTITION BY categoryid ORDER BY unitprice DESC)

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

() (g y p)

AS pricerank

FROM Production.Products

ORDER BY categoryid, pricerank;

The partial result, edited for space:

categoryid productid unitprice pricerank

----------- ----------- --------- ---------

1 38 263.50 1

1 43 46.00 2

1 2 19.00 3

2 63 43.90 1

2 8 40.00 2

2 61 28.50 3

2 6 25.00 4

3 20 81.00 1

3 62 49.30 2

3 27 43.90 3

3 26 31.23 4

Notice that the addition of partitioning allows the window function to operate at a
more granular level than when OVER returns an unrestricted set.

Note: Repeating values and gaps in the pricerank column are expected when
using RANK in case of ties. Use DENSE_RANK if gaps are not desired. See
the next topics for more information.

Window Aggregate Functions

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Window aggregate functions are similar to the aggregate functions you have already
used in this course. They aggregate a set of rows and return a single value. However,
when used in the context of windows, they operate on the set returned by the OVER
clause, not on a set defined by a grouped query using GROUP BY.

Window aggregate functions provide support for windowing elements you have
learned about in this module, such as partitioning, ordering, and framing. Unlike other
window functions, ordering is not required with aggregate functions, unless you are
also specifying a frame.

Window Aggregate Example

SELECT custid,

 ordermonth,

 qty,

 SUM(qty) OVER (PARTITION BY custid) AS totalpercust

FROM Sales.CustOrders;

The partial result, edited for space:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 18/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

custid ordermonth qty totalpercust

----------- ----------------------- ----------- ------------

1 2007-08-01 00:00:00.000 38 174

1 2007-10-01 00:00:00.000 41 174

1 2008-01-01 00:00:00.000 17 174

2 2006-09-01 00:00:00.000 6 63

2 2007-08-01 00:00:00.000 18 63

3 2006-11-01 00:00:00.000 24 359

3 2007-04-01 00:00:00.000 30 359

3 2007-05-01 00:00:00.000 80 359

4 2007-02-01 00:00:00.000 40 650

4 2007-06-01 00:00:00.000 96 650

Further Window Aggregate Example

SELECT custid, ordermonth, qty,

 SUM(qty) OVER (PARTITION BY custid) AS custtotal,

 CAST(100. * qty/SUM(qty) OVER (PARTITION BY custid)AS

NUMERIC(8,2)) AS OfTotal

FROM Sales.CustOrders;

The result:

custid ordermonth qty custtotal OfTotal

------ ----------------------- --- ---------- -------

1 2007-08-01 00:00:00.000 38 174 21.84

1 2007-10-01 00:00:00.000 41 174 23.56

1 2008-01-01 00:00:00.000 17 174 9.77

1 2008-03-01 00:00:00.000 18 174 10.34

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

1 2008-04-01 00:00:00.000 60 174 34.48

2 2006-09-01 00:00:00.000 6 63 9.52

2 2007-08-01 00:00:00.000 18 63 28.57

2 2007-11-01 00:00:00.000 10 63 15.87

2 2008-03-01 00:00:00.000 29 63 46.03

3 2006-11-01 00:00:00.000 24 359 6.69

3 2007-04-01 00:00:00.000 30 359 8.36

3 2007-05-01 00:00:00.000 80 359 22.28

3 2007-06-01 00:00:00.000 83 359 23.12

3 2007-09-01 00:00:00.000 102 359 28.41

3 2008-01-01 00:00:00.000 40 359 11.14

Window Ranking Functions

Window ranking functions return a value representing the rank of a row with respect
to other rows in the window. To accomplish this, ranking functions require an ORDER
BY element within the OVER clause, to establish the position of each row within the
window.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note: Remember that the ORDER BY element within the OVER clause
affects only the processing of rows by the window function. To control the
display order of the results, add an ORDER BY clause to the end of the
SELECT statement, as with other queries.

The primary difference between RANK and DENSE_RANK is the handling of rows
when there are tie values.

RANK and DENSE_RANK Example

SELECT CatID, CatName, ProdName, UnitPrice,

 RANK() OVER(PARTITION BY CatID ORDER BY UnitPrice DESC) AS

PriceRank,

 DENSE_RANK() OVER(PARTITION BY CatID ORDER BY UnitPrice

DESC) AS DensePriceRank

FROM Production.CategorizedProducts

ORDER BY CatID;

The partial results follow. Note the rank numbering of the rows following the products
with a unitprice of 18.00:

CatID CatName ProdName UnitPrice PriceRank DensePriceRank

----- --------- ------------- --------- --------- --------------

1 Beverages Product QDOMO 263.50 1 1

1 Beverages Product ZZZHR 46.00 2 2

1 Beverages Product RECZE 19.00 3 3

1 Beverages Product HHYDP 18.00 4 4

1 Beverages Product LSOFL 18.00 4 4

1 Beverages Product NEVTJ 18.00 4 4

1 Beverages Product JYGFE 18.00 4 4

1 Beverages Product TOONT 15.00 8 5

1 Beverages Product XLXQF 14.00 9 6

1 Beverages Product SWNJY 14.00 9 6

1 Beverages Product BWRLG 7.75 11 7

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 21/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

1 Beverages Product QOGNU 4.50 12 8

Go to Ranking Functions (Transact-SQL) in the SQL Server Technical
Documentation:

Ranking Functions (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402779

Window Distribution Functions

Window distribution functions perform statistical analysis on the rows within the
window or window partition. Partitioning a window is optional for distribution
functions, but ordering is required.

Distribution functions return a rank of a row, but instead of being expressed as an
ordinal number, as with RANK, DENSE_RANK, or ROW_NUMBER, it is expressed
as a ratio between 0 and 1. SQL Server provides rank distribution with the
PERCENT_RANK and CUME_DIST functions. It provides inverse distribution with
the PERCENTILE_CONT and PERCENTILE_DISC functions.

http://go.microsoft.com/fwlink/?LinkID=402779

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 22/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

These functions are listed here for completeness only and are beyond the scope of
this course. For more information, see the SQL Server Technical Documentation:

Analytic Functions (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402780

Window Offset Functions

Windows offset functions give access to values located in rows other than the current
row. This can enable queries that perform comparisons between rows, without the
need to join the table to itself.

Offset functions operate on a position that is either relative to the current row, or
relative to the starting or ending boundary of the window frame. LAG and LEAD
operate on an offset to the current row. FIRST_VALUE and LAST_VALUE operate on
an offset from the window frame.

Note: Since FIRST_VALUE and LAST_VALUE operate on offsets from the
window frame, it is important to remember to specify framing options other
than the default of RANGE BETWEEN UNBOUND PRECEDING AND
CURRENT ROW.

http://go.microsoft.com/fwlink/?LinkID=402780

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 23/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Window Offset Function Example

SELECT employee, orderyear ,totalsales AS currsales,

 LEAD(totalsales, 1,0) OVER (PARTITION BY employee ORDER BY

orderyear) AS nextsales

FROM Sales.OrdersByEmployeeYear

ORDER BY employee, orderyear;

The partial results:

employee orderyear currsales nextsales

-------- --------- --------- ---------

1 2006 38789.00 97533.58

1 2007 97533.58 65821.13

1 2008 65821.13 0.00

2 2006 22834.70 74958.60

2 2007 74958.60 79955.96

2 2008 79955.96 0.00

3 2006 19231.80 111788.61

3 2007 111788.61 82030.89

3 2008 82030.89 0.00

Demonstration: Exploring Windows Functions
In this demonstration, you will see how to use window aggregate, ranking, and offset
functions.

Demonstration Steps

Use Window Aggregate, Ranking, and Offset Functions

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 24/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Select the code under the comment Step 7, and then click Execute.

9. Select the code under the comment Step 8, and then click Execute.

10. Select the code under the comment Step 9, and then click Execute.

11. Select the code under the comment Step 10, and then click Execute.

12. Select the code under the comment Step 11, and then click Execute.

13. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Categorize Activity
Place each windowing function into the appropriate category. Indicate your answer by
writing the category number to the right of each item.

SUM()

MAX()

PERCENT_RANK()

RANK()

PERCENTILE_DISC()

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 25/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Window Aggregate Functions

Please drag items here

Window Ranking Function

Please drag items here

Window Distribution Functions

Please drag items here

Check answer Show solution Reset

Lab: Using Window Ranking, Offset, and Aggregate
Functions

Scenario

As a business analyst for Adventure Works, you will be writing reports using
corporate databases stored in SQL Server. You have been provided with a set of
business requirements for data and you will write T-SQL queries to retrieve the

CUME_DIST()

NTITLE()

ROW_NUMBER()

DENSERANK()

MIN()

PERCENTILE_CONT()

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 26/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

specified data from the databases. To fill these requests, you will need to calculate
ranking values, as well as the difference between two consecutive rows, and running
totals. You will use window functions to achieve these calculations.

Objectives

After completing this lab, you will be able to:

• Write queries that use ranking functions.

• Write queries that use offset functions.

• Write queries that use window aggregation functions.

Lab Setup

Estimated Time: 60 minutes

Virtual machine: 20761C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa55w.rd

Exercise 1: Writing Queries That Use Ranking Functions

Scenario

The sales department would like to rank orders by their values for each customer.
You will provide the report by using the RANK function. You will also practice how to
add a calculated column to display the row number in the SELECT clause.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement That Uses the ROW_NUMBER Function to Create

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 27/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

a Calculated Column

3. Add an Additional Column Using the RANK Function

4. Write A SELECT Statement to Calculate a Rank, Partitioned by Customer and
Ordered by the Order Value

5. Write a SELECT Statement to Rank Orders, Partitioned by Customer and Order
Year, and Ordered by the Order Value

6. Filter Only Orders with the Top Two Ranks

Result: After this exercise, you should know how to use ranking functions in T-
SQL statements.

Exercise 2: Writing Queries That Use Offset Functions

Scenario

You need to provide separate reports to analyze the difference between two
consecutive rows. This will enable business users to analyze growth and trends.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Next Row Using a Common Table
Expression (CTE)

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 28/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

2. Add a Column to Display the Running Sales Total

3. Analyze the Sales Information for the Year 2007

Result: After this exercise, you should be able to use the offset functions in your T-
SQL statements.

Exercise 3: Writing Queries That Use Window Aggregate Functions

Scenario

To better understand the cumulative sales value of a customer through time and to
provide the sales analyst with a year-to-date analysis, you will have to write different
SELECT statements that use the window aggregate functions.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Display the Contribution of Each Customer’s
Order Compared to That Customer’s Total Purchase

2. Add a Column to Display the Running Sales Total

3. Analyze the Year-to-Date Sales Amount and Average Sales Amount for the Last
Three Months

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 29/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should have a basic understanding of how to use
window aggregate functions in T-SQL statements.

Module Review and Takeaways

In this module, you have learned how to:

• Describe the benefits of using window functions.

• Restrict window functions to rows defined in an OVER clause, including partitions
and frames.

• Write queries that use window functions to operate on a window of rows and
return ranking, aggregation, and offset comparison results.

Review Question(s)

Check Your Knowledge

Discovery
What results will be returned by a ROW_NUMBER function if there is no ORDER BY
clause in the query?

Show solution Reset

Check Your Knowledge

Discovery
Which ranking function would you use to return the values 1,1,3? Which would return
1,1,2?

Show solution Reset

Check Your Knowledge

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 30/30

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Discovery
Can a window frame extend beyond the boundaries of the window partition defined in
the same OVER() clause?

Show solution Reset

