4/21/2019 Bookshelf

Module 15: Executing Stored Procedures

Contents:

Module Overview
Lesson 1: 'Querying Data with Stored Procedures
Lesson 2: Passing Parameters to Stored Procedures
Lesson 3: Creating Simple Stored Procedures
Lesson 4: Working with Dynamic SQL
Lab: Executing Stored Procedures

Module Review and Takeaways

Module Overview

In addition to writing stand-alone SELECT statements to return data from Microsoft®
SQL Server®, you may need to execute T-SQL procedures created by an
administrator or developer and stored in a database. This module will show you how
to execute stored procedures, including how to pass parameters into procedures
written to accept them. This module will also show you how basic stored procedures
are created, providing a better understanding of what happens on the server when
you execute one. Finally, this module will show you how to generate dynamic SQL
statements, which is often a requirement in development environments where stored
procedures are not being used.

Objectives

After completing this module, you will be able to:

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1127

4/21/2019 Bookshelf

» Return results by executing stored procedures.
» Pass parameters to procedures.
» Create simple stored procedures that encapsulate a SELECT statement.

» Construct and execute dynamic SQL with EXEC and sp_executesq|.

Lesson 1: Querying Data with Stored Procedures

Many reporting and development tools offer the choice between writing and executing
specific T-SQL SELECT statements, and choosing from queries saved as stored
procedures in SQL Server. While stored procedures can encapsulate most T-SQL
operations, including system administration tasks, this lesson will focus on using
stored procedures to return result sets, as an alternative to writing your own SELECT
statements.

Lesson Objectives

After completing this lesson, you will be able to:

» Describe stored procedures and their use.

+ Write T-SQL statements that execute stored procedures to return data.

Examining Stored Procedures

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/27

4/21/2019 Bookshelf

- Stored procedures are collections of T-SQL
statements stored in a database

- Procedures can return results, manipulate data, and
perform administrative actions on the server

- With other objects, procedures can provide a trusted
application programming interface to a database,
insulating applications from database structure
changes

- Use views, functions, and procedures to return data
- Use procedures to modify and add new data

- Alter procedure definition in one place, rather than
update application code

Stored procedures are named collections of T-SQL statements created with the
CREATE PROCEDURE command. They encapsulate many server and database
commands, and can provide a consistent application programming interface (API) to
client applications using input parameters, output parameters, and return values.

Because this course focuses primarily on retrieving results from databases through
SELECT statements, this lesson will only cover the use of stored procedures that
encapsulate SELECT queries. However, it might be useful to note that stored
procedures can also include INSERT, UPDATE, DELETE, and other valid T-SQL
commands. They can also be used to provide an interface layer between a database
and an application. Using such a layer, developers and administrators can ensure
that all activity is performed by trusted code modules that validate input and handle
errors appropriately. Elements of such an API would include:

» Views or table-valued functions as wrappers for simple retrieval.

» Stored procedures for retrieval when complex validation or manipulation is
required.

« Stored procedures for inserting, updating, or deleting rows.

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/27

4/21/2019 Bookshelf
In addition to encapsulating code and making it easier to maintain, this approach
provides a security layer. Users may be granted access to objects rather than the
underlying tables themselves. This ensures that users might only use the provided
application to access data rather than other tools.

Stored procedures also offer other benefits, including network and database engine
performance improvements. See the course 20762B: Developing Microsoft SQL
Server Databases for additional information on these benefits and more details on
creating and using stored procedures.

For more information, see Microsoft Docs:

Stored Procedures (Database Engine)

http://aka.ms/sshz88

Executing Stored Procedures

*Invoke a stored procedure using EXECUTE or
EXEC

- Call procedure with two-part name

- Pass parameters in @name=value form, using
appropriate data type

EXEC Production.ProductsbySuppliers
@supplierid = 1;

EXEC Production.ProductsbySuppliers
@supplierid = 1, @numrows - 2;

Earlier in this course, you learned how to execute system stored procedures. The
same mechanism exists for executing user procedures. Therefore, some of the
following guidelines are provided for review:

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6

4727

http://aka.ms/sshz88

4/21/2019 Bookshelf

» To execute a stored procedure, use the EXECUTE command or its shortcut,
EXEC, followed by the two-part name of the procedure. Your reporting tool may
provide a graphical interface for selecting procedures by name, which will invoke
the EXEC command for you.

 If the procedure accepts parameters, pass them as name-value pairs. For
example, if the parameter is called custid and the value to pass is 5, use this form:
@custid=5. Multiple parameters are separated with commas.

» Pass parameters of the appropriate data type to the stored procedure. For
example, if a procedure accepts an NVARCHAR, pass in the Unicode character
string format: N'string'.

+ If the procedure encapsulates a simple SELECT statement, no additional
elements are needed to execute it. If the procedure includes an OUTPUT
parameter, additional steps will be required. See the lesson on OUTPUT
parameters later in this module.

Note: You may see sample code that omits the use of the EXEC command
before the name of a procedure. While this works on the first line of a batch
(or in the only line of a one-line batch), this is not a best practice. Always use
EXECUTE or EXEC to invoke stored procedures.

For more information, see Microsoft Docs:
Execute a Stored Procedure

http://aka.ms/Dyplvh

Demonstration: Querying Data with Stored Procedures

In this demonstration, you will see how to use stored procedures.

Demonstration Steps

Use Stored Procedures

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5127

http://aka.ms/Dyplvh

4/21/2019

Bookshelf

1. Ensure that the 20761C-MIA-DC and 20761C-MIA-SQL virtual machines are
both running, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod15\Setup.cmd as an administrator.

3. Atthe command prompt, type y, and press Enter.

4. Wait until the script completes, and then press Enter.

5. Start SQL Server Management Studio and connect to the MIA-SQL database
engine instance using Windows authentication.

6. Open the Demo.ssmssin solution in the D:\Demofiles\Mod15\Demo folder.

7. Open the 11 - Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Select the code under the comment Step 5, and then click Execute.

13. Select the code under the comment Step 6, and then click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Discovery

You have the following query, which is intended to call a stored procedure called

HumanResources.FilteredSkills:
EXEC HumanResources.FilteredSkills
departmentid = @1, skilllevel = @4;
Your query returns an error. What should you do to resolve the error?

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6

6/27

4/21/2019 Bookshelf

Lesson 2: Passing Parameters to Stored Procedures

Procedures can be written to accept parameters to provide greater flexibility. Most
parameters are written as input parameters, which accept values passed in the
EXEC statement, and are used inside the procedure. Some procedures might also
return values in the form of OUTPUT parameters, which require additional handling
by the client when invoking the procedure. You will learn how to pass input and return
output parameters in this lesson.

Lesson Objectives

After completing this lesson, you will be able to:

» Write EXECUTE statements that pass input parameters to stored procedures.

« Write T-SQL batches that prepare output parameters and execute stored
procedures.

Passing Input Parameters to Stored Procedures

- Parameters are defined in the header of the
procedure code, including name, data type and
direction (input is default)

- Parameters are discoverable using SQL Server
Management Studio and the sys.parameters view

- To pass parameters in an EXEC statement, use
names defined in procedure

CREATE PROCEDURE Production.ProductsbySuppliers
(@supplierid AS INT)
AS .

EXEC Production.ProductsbySuppliers
@supplierid — 1;

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7127

4/21/2019 Bookshelf
Stored procedures can be written to accept input parameters to provide greater
flexibility. Procedures declare their parameters by name and data type in the header
of the CREATE PROCEDURE statement, and then use the parameters as local
variables in the body of the procedure. For example, an input parameter might be
used in the predicate of a WHERE clause or as the value in a TOP operator.

Stored Procedure with Parameters Syntax

EXEC <schema_name>.<procedure_name> @<parameter_name> = <VALUE> [,

e

Stored Procedure with Parameters Example

EXEC Production.ProductsBySuppliers @supplierid = 1;

Stored Procedure with Multiple Parameters Example

EXEC Sales.FindOorder @empid = 1, @custid=1;

Note: The previous example refers to a procedure that does not exist in the
sample database for the course. Other examples in the demonstration script
for this lesson can be executed against procedures in the sample TSQL
database.

If you have not been provided with the names and data types of the parameters for
the procedures you will be executing, you can typically discover them yourself,
assuming you have permissions to do so. SQL Server Management Studio (SSMS)
displays a parameters folder below each stored procedure that lists the names,
types, and direction (input/output) of each defined parameter. Alternatively, you can
query a system catalog view such as sys.parameters to retrieve parameter
definitions. For an example, see the demonstration script provided for this lesson.

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/27

4/21/2019 Bookshelf
For more information about passing parameters to stored procedures, see Microsoft
Docs:

Specify Parameters

http:/laka.ms/R5zjjo

Working with OUTPUT Parameters

« Output parameters allow you to return values
from a stored procedure

- Compare with returning a result set

- Parameter marked for output in procedure
header and in calling query

CREATE PROCEDURE <proc_name >
(@<input_param > AS <type >,

@ < output_param> AS <type> OUTPUT)
AS

DECLARE @ <output_param> AS <type>;
EXEC <proc_name > <input_parameter_list -,
@ < output_param > OUTPUT;

SELECT @output_param;

So far in this module, you have seen procedures that return results through an
embedded SELECT statement. SQL Server also gives you the capability to return a
scalar value through a parameter marked as an OUTPUT parameter. This has
several benefits: a procedure can return a result set via a SELECT statement and
provide an additional value, such as a row count, to the calling application. For some
specific scenarios where only a single value is desired, a procedure that returns an
OUTPUT parameter can perform faster than a procedure that returns the scalar value
in a result set.

There are two aspects to working with stored procedures using output parameters:

1. The procedure itself must mark a parameter with the OUTPUT keyword in the

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/27

http://aka.ms/R5zjjo

4/21/2019 Bookshelf

parameter declaration.

Creating a Stored Procedure with an OUTPUT Parameter Example

CREATE PROCEDURE Sales.GetCustPhone

(@Qcustid AS INT, @phone AS nvarchar(24) OUTPUT)
AS ...

2. The T-SQL batch that calls the procedure must provide additional code to
handle the output parameter. The code includes a local variable that acts as a
container for the value that will be returned by the procedure when it executes.
The parameter is added to the EXEC statement, marked with the OUTPUT
keyword. After the stored procedure has completed, the variable will contain the
value of the output parameter set inside the procedure.

Executing a Stored Procedure with OUTPUT Parameter Example

DECLARE @customerid INT =5, @phonenum NVARCHAR(24);

EXEC Sales.GetCustPhone @custid=@customerid, @phone=@phonenum
OUTPUT;
SELECT @phonenum AS phone;

Demonstration: Passing Parameters to Stored Procedures

In this demonstration, you will see how to pass parameters to a stored procedure.

Demonstration Steps

Pass Parameters to a Stored Procedure

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/27

4/21/2019 Bookshelf

3. In Object Explorer, expand Databases, expand AdventureWorks, expand
Programmability, and then expand Stored Procedures.

4. Expand any procedure, expand Parameters, and then point out list of
parameters, data type and direction.

5. Select the code under the comment Step 3, and then click Execute.
6. Select the code under the comment Step 4, and then click Execute.
7. Select the code under the comment Step 5, and then click Execute.
8. Select the code under the comment Step 6, and then click Execute.
9. Select the code under the comment Step 7, and then click Execute.
10. Select the code under the comment Step 8, and then click Execute.
11. Select the code under the comment Step 9, and then click Execute.
12. Select the code under the comment Step 10, and then click Execute.
13. Select the code under the comment Step 11, and then click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Select the best answer

A DBA has created a stored procedure in the HumanResources database by executing
the following:
CREATE PROCEDURE HumanResources.SkillsForEmployee (@empid AS INT)
AS
SELECT e.ID, e.FirstName, e.LastName, s.SkillName, s.Level
FROM HumanResources.Employees AS e
JOIN HumanResources.Skills AS s ON e.ID = s.EmployeelD
WHERE e.ID = @empid
GO
You call the procedure with the following statement:
EXEC HumanResources.SkillsForEmployee @empid = N'24'

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/27

4/21/2019 Bookshelf

Your query returns an error. What should you do to fix your query?

Pass the @empid parameter as an integer instead of an nvarchar.

Move the position of the “@” symbol to the correct place.

Add a value for the e.ID parameter to your query.

Instead of using the stored procedure, execute your own SELECT query.

Add the OUTPUT keyword to the @empid parameter.

Lesson 3: Creating Simple Stored Procedures

To better understand how to work with stored procedures written by developers and
administrators, it is useful to learn how they are created. In this lesson, you will see
how to write a stored procedure that returns a result set from an encapsulated
SELECT statement.

Lesson Objectives

After completing this lesson, you will be able to:

+ Use the CREATE PROCEDURE statement to write a stored procedure.

» Create a stored procedure that accepts input parameters.

Creating Procedures to Return Rows

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/27

4/21/2019 Bookshelf

- Stored procedures can be wrappers for simple
or complex SELECT statements

* Procedures may include input and output
parameters in addition to return values

« Use CREATE PROCEDURE statement:

CREATE PROCEDURE <schema_name.proc_name>
(< parameter_list)

AS

SELECT <body of SELECT statement >;

« Modify design of procedure with ALTER
PROCEDURE statement

- No need to drop, recreate

Stored procedures in SQL Server are used for many tasks, including system
configuration and maintenance, in addition to data manipulation. As previously
mentioned, there are advantages to creating procedures to standardize access to
data. To do that, you can create a stored procedure that is a wrapper for a SELECT
statement, which might include any of the data manipulations you have already
learned in this course.

Example of a Procedure That Returns Rows

CREATE PROCEDURE Sales.OrderSummaries
AS
SELECT O.orderid, O.custid, O.empid, O.shipperid, CAST(O.orderdate
AS date)AS orderdate,

Ssum(oD.qty) AS quantity,

CAST(SuM(OD.qgty * OD.unitprice * (1 - oD.discount))

AS NUMERIC(12, 2)) AS ordervalue

FROM Sales.Orders AS O

JOIN Sales.OrderDetails AS OD

ON O.orderid = OD.orderid

GROUP BY 0O.orderid, O.custid, O.empid, O.shipperid, O.orderdate;

GO
https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/27

4/21/2019 Bookshelf

Executing a Procedure That Returns Rows

EXEC [Sales].[OrderSummaries];

A partial result:

orderid custid empid shipperid orderdate quantity ordervalue

10248 85 5 3 2006-07-04 27 440.00
10249 79 6 1 2006-07-05 49 1863.40
10250 34 4 2 2006-07-08 60 1552.60

To modify the design of the procedure, such as to change the columns in the
SELECT list oradd an ORDER BY clause, use the ALTER PROCEDURE
(abbreviated ALTER PROC) statement and supply the full new code for the
procedure.

Altering a Stored Procedure That Returns Rows

ALTER PROCEDURE Sales.OrderSummaries
AS
SELECT O.orderid, O.custid, O.empid, O.shipperid, CAST(O.orderdate
AS date)AS orderdate,

Sum(0OD.qty) AS quantity,

CAST(SuM(OD.qgty * OD.unitprice * (1 - oD.discount))

AS NUMERIC(12, 2)) AS ordervalue

FROM Sales.Orders AS O

JOIN Sales.OrderDetails AS OD

ON O.orderid = OD.orderid

GROUP BY 0O.orderid, O.custid, O0.empid, O.shipperid, O.orderdate
ORDER BY orderid, orderdate;

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/27

4/21/2019 Bookshelf

Changing the procedure with ALTER PROCEDURE is preferable to using DROP
PROCEDURE to delete it, and then using CREATE PROCEDURE to rebuild it with a
new definition. By altering it in place, security permissions do not need to be
reassigned.

For more information on modifying stored procedures, see Microsoft Docs:

Modify a Stored Procedure

http://aka.ms/Bn33te

Creating Procedures That Accept Parameters

*Input parameters passed to procedure logically
behave like local variables within procedure code

« Assign name with @ prefix, data type in procedure
header

- Refer to parameter in body of procedure

CREATE PROCEDURE Production.ProdsByCategory

(@numrows AS int, @catid AS int)

AS

SELECT TOP(@numrows) productid,
productname, unitprice

FROM Production.Products

WHERE categoryid — @catid;

A stored procedure that accepts input parameters provides added flexibility to its use.
To define input parameters in your own stored procedures, declare them in the
header of the CREATE PROCEDURE statement, then refer to them in the body of
the stored procedure. Define the parameters with an @ prefix in the name, then
assign them a data type.

Note: Parameters may also be assigned default values, including NULL.

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/27

http://aka.ms/Bn33te

4/21/2019 Bookshelf

Syntax of a Stored Procedure That Accepts Parameters

CREATE PROCEDURE <schema>.<procedure_name>
(@G<parameter_name> AS <data_type>)
AS ...

Example of a Stored Procedure That Accepts Parameters

CREATE PROCEDURE Sales.OrderSummariesByEmployee
(@empid AS 1int)
AS
SELECT O.orderid, O.custid, O.empid, O.shipperid, CAST(O.orderdate
AS date)AS orderdate,

Sum(OD.qty) AS quantity,

CAST(Sum(OD.qty * OD.unitprice * (1 - OD.discount))

AS NUMERIC(12, 2)) AS ordervalue

FROM Sales.Orders AS O

JOIN Sales.OrderDetails AS OD

ON O.orderid = OD.orderid

WHERE empid = @empid
GROUP BY 0O.orderid, O.custid, O0.empid, O.shipperid, O.orderdate
ORDER BY orderid, orderdate;
GO

Executing a Stored Procedure That Accepts Parameters

EXEC Sales.OrderSummariesByEmployee @empid = 5;

Demonstration: Creating Simple Stored Procedures

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/27

4/21/2019 Bookshelf

In this demonstration, you will see how to create a stored procedure.

Demonstration Steps

Create a Stored Procedure

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.
3. Select the code under the comment Step 2, and then click Execute.
4. Select the code under the comment Step 3, and then click Execute.
5. Select the code under the comment Step 4, and then click Execute.
6. Select the code under the comment Step 5, and then click Execute.

7. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Discovery

The HumanResources.SkillLevelsForDepartment stored procedure is a popular
procedure that ensures skills data can be examined in an anonymous form. You have
been asked to add a new parameter to the stored procedure. Why should you use
ALTER PROCEDURE instead of DROP PROCEDURE followed by CREATE PROCEDURE.

Lesson 4: Working with Dynamic SQL

In organizations where creating parameterized stored procedures is not supported,
you might need to execute T-SQL code constructed in your application at runtime.
Dynamic SQL provides a mechanism for constructing a character string that is
passed to SQL Server, interpreted as a command, and executed.

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17127

4/21/2019

Bookshelf

In this lesson, you will learn how to pass dynamic SQL queries to SQL Server, using
the EXEC statement and the system procedure sp_executesql.

Lesson Objectives

After completing this lesson, you will be able to:

» Describe how T-SQL can be dynamically constructed.

» Write queries that use dynamic SQL.

Constructing Dynamic SQL

«Dynamic SQL is T-SQL code assembled into a
character string, interpreted as a command, and
executed

- Dynamic SQL provides flexibility for administrative
and programming tasks

- Two methods for dynamically executing SQL
statements:

- EXEC command can accept a string as input in
parentheses; no parameters may be passed in

- System-stored procedure sp_executesql (preferred)
supports parameters

- Beware of risks from unvalidated inputs in
dynamic SQL

Dynamic SQL provides a mechanism for constructing a character string that is
passed to SQL Server, interpreted as a command, and executed. Why would you
want to do this? You might not know all the values necessary for your query until

execution time—such as taking the results of one query and using them as inputs to

another (for example, a pivot query) or an administrative maintenance routine that

accepts object names at runtime.

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6

18/27

4/21/2019 Bookshelf

T-SQL supports two methods for building dynamic SQL expressions—using the
EXECUTE command (or its shortcut EXEC) with a string or invoking the system-
stored procedure sp_executesql:

1. The EXECUTE or EXEC command supports the use of a string as an input in
the following form, but does not support parameters, which need to be
combined in the input string:

Dynamic SQL Example

DECLARE @sqglstring AS VARCHAR(1000);

SET @sqlstring='SELECT empid,' + ' Tastname '+' FROM
HR.employees;"'

EXEC(@sqlstring);

GO

2. The system-stored procedure sp_executesql supports string input for the query,
in addition to input parameters.

Passing Dynamic SQL with sp_executesql

DECLARE @sqlcode AS NVARCHAR(256) = N'SELECT GETDATE() AS dt';
EXEC sys.sp_executesql @statement
GO

@sqglcode;

It is important to know that EXEC cannot accept parameters and does not promote
query plan reuse. Therefore, it is preferred that you use sp_executesql for passing
dynamic SQL to SQL Server.

For more information, see the Using EXECUTE with a Character String in the
EXECUTE (Transact-SQL) topic in Microsoft Docs:

EXECUTE (Transact-SQL)

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/27

4/21/2019 Bookshelf

http://aka.ms/Fors3z

For more information on using sp_executesql, see the next topic in this lesson.

Writing Queries with Dynamic SQL

« Using sp_executesq|
- Accepts string as code to be run
- Supports input, output parameters for query

- Allows parameterized code while minimizing risk of
SQL injection

- Can perform better than EXEC due to query plan reuse

DECLARE @sqlcode AS NVARCHAR(256) —
N'<code_to_run>";
EXEC sys.sp_executesql @statement — @sqglcode;

DECLARE @sqlcode AS NVARCHAR(256) —
N'SELECT GETDATE() AS dt";
EXEC sys.sp_executesql @statement — @sqglcode;

In the previous topic, you learned that there were two methods for executing dynamic
SQL. This topic focuses on the preferred method, calling sp_executesq|.

Constructing and executing dynamic SQL with sp_executesql is preferred over using
EXEC because EXEC cannot take parameters at runtime. In addition, sp_executesq|l
generates execution plans that are more likely to be reused than EXEC. Perhaps
most important, though, using sp_executesql can provide a line of defense against
SQL injection attacks, by defining data types for parameters.

sp_executesql Syntax Example

DECLARE @sqglcode AS NVARCHAR(256) N'<code_to_run>"';

EXEC sys.sp_executesql @statement = @sqlcode;

GO

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/27

http://aka.ms/Fors3z

4/21/2019 Bookshelf

sp_executesql Example

DECLARE @sqglcode AS NVARCHAR(256)
N'SELECT GETDATE() AS dt';

@sqglcode;

EXEC sys.sp_executesql @statement
GO

To use sp_executesql with parameters, provide the query code, in addition to two
additional parameters:

* @stmt, a Unicode string variable to hold the query text.

* @params, a Unicode string variable that holds a comma-separated list of
parameter names and data types.

In addition to these two variables, you will declare and assign variables to hold the
values for the parameters you wish to pass in to sp_executesql.

Using sp_executesql with Parameters

DECLARE @sqglstring AS NVARCHAR(1000);
DECLARE @empid AS INT;
SET @sqlstring=N'SELECT empid, lastname FROM HR.employees WHERE
empid=@empid;"’
EXEC sys.sp_executesql @statement = @sqlstring, @params=N'@empid AS
INT',

@empid = 5;

The result:

empid Tastname

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 21/27

4/21/2019 Bookshelf

5 Buck

Note: sp _executesql can also use output parameters marked with the
OUTPUT keyword, which you learned about earlier in this module.

For a discussion about query plan reuse and more coverage of sp_executesql, see
the SQL Server Technical Documentation:

Using sp_executesql

http://go.microsoft.com/fwlink/?LinklD=402795

Demonstration: Working with Dynamic SQL

In this demonstration, you will see how to execute dynamic SQL queries.

Demonstration Steps

Execute Dynamic SQL Queries

—

In Solution Explorer, open the 41 - Demonstration D.sql script file.

2. Select the code under the comment Step 1, and then click Execute.
3. Select the code under the comment Step 2, and then click Execute.
4. Select the code under the comment Step 3, and then click Execute.
5. Select the code under the comment Step 4, and then click Execute.

6. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Discovery

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 22127

http://go.microsoft.com/fwlink/?LinkID=402795

4/21/2019 Bookshelf

You want to execute dynamic SQL with a single parameter named @skillname. In
addition to the parameter itself, what other parameters should you send to
sp_executesql?

Lab: Executing Stored Procedures

Scenario

As a business analyst for Adventure Works, you will be writing reports using
corporate databases stored in SQL Server. You have been given a set of business
requirements for data and will write T-SQL queries to retrieve the specified data from
the databases. You have learned that some of the data can only be accessed via
stored procedures instead of directly querying the tables. Additionally, some of the
procedures require parameters in order to interact with them.

Objectives

After completing this lab, you will be able to:

* Use the EXECUTE statement to invoke stored procedures.
» Pass parameters to stored procedures.

» Execute system stored procedures.

Lab Setup

Estimated Time: 30 minutes
Virtual machine: 20761C-MIA-SQL
User name: ADVENTUREWORKS\Student

Password: Pa55w.rd

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 23/27

4/21/2019 Bookshelf

Exercise 1: Using the EXECUTE Statement to Invoke Stored
Procedures

Scenario

The IT department has supplied T-SQL code to create a stored procedure to retrieve
the top 10 customers by the total sales amount. You will practice how to execute a
stored procedure.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment
2. Create and Execute a Stored Procedure

3. Modify the Stored Procedure and Execute It

Result: After this exercise, you should be able to invoke a stored procedure using
the EXECUTE statement.

Exercise 2: Passing Parameters to Stored Procedures

Scenario

The IT department supplied you with additional modifications of the stored procedure
in task 1. The modified stored procedure lets you pass parameters that specify the
order year and number of customers to retrieve. You will practice how to execute the
stored procedure with a parameter.

The main tasks for this exercise are as follows:

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 24/27

4/21/2019 Bookshelf

1. Execute a Stored Procedure with a Parameter for Order Year
2. Modify the Stored Procedure to Have a Default Value for the Parameter
3. Pass Multiple Parameters to the Stored Procedure

4. Return the Result from a Stored Procedure Using the OUTPUT Clause

Result: After this exercise, you should know how to invoke stored procedures that
have parameters.

Exercise 3: Executing System Stored Procedures

Scenario

In the previous module, you learned how to query the system catalog. Now you will
practice how to execute some of the most commonly used system-stored procedures
to retrieve information about tables and columns.

The main tasks for this exercise are as follows:

—_—

Execute the Stored Procedure sys.sp_help
2. Execute the Stored Procedure sys.sp_helptext
3. Execute the Stored Procedure sys.sp_columns

4. Drop the Created Stored Procedure

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 25127

4/21/2019 Bookshelf

Result: After this exercise, you should have a basic knowledge of invoking
different system-stored procedures.

Module Review and Takeaways

In this module, you have learned how to:

» Return results by executing stored procedures.
» Pass parameters to procedures.
» Create simple stored procedures that encapsulate a SELECT statement.

» Construct and execute dynamic SQL with EXEC and sp_executesq|.

Review Question(s)

Check Your Knowledge

Discovery

What benefits do stored procedures provide for data retrieval that views do not?

Check Your Knowledge

Discovery

What form should parameter and value pairs take when passed to a stored procedure in
the EXECUTE statement?

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 26/27

4/21/2019 Bookshelf

Check Your Knowledge

Discovery

Which method for constructing dynamic SQL allows parameters to be passed at
runtime?

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 27127

