
4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Module 16: Programming with T-SQL

Contents:

Module Overview

Lesson 1: T-SQL Programming Elements

Lesson 2: Controlling Program Flow

Lab: Programming with T-SQL

Module Review and Takeaways

Module Overview

In addition to the data retrieval and manipulation statements you have learned about
in this course,

T-SQL provides some basic programming features, such as variables, control-of-flow
elements, and conditional execution. In this module, you will learn how to enhance
your T-SQL code with programming elements.

Objectives

After completing this module, you will be able to:

• Describe the language elements of T-SQL used for simple programming tasks.

• Describe batches and how they are handled by SQL Server.

• Declare and assign variables and synonyms.

• Use IF and WHILE blocks to control program flow.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Lesson 1: T-SQL Programming Elements

With a few exceptions, most of your work with T-SQL in this course so far has
focused on single-statement structures, such as SELECT statements. As you move
from executing code objects to creating them, you will need to understand how
multiple statements interact with the server on execution. You will also need to be
able to temporarily store values. For example, you might need to temporarily store
values that will be used as parameters in stored procedures. Finally, you might want
to create aliases, or pointers, to objects so that you can reference them by a different
name or from a different location than where they are defined. This lesson will cover
each of these topics.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe how Microsoft® SQL Server® treats collections of statements as
batches.

• Create and submit batches of T-SQL code for execution by SQL Server.

• Describe how SQL Server stores temporary objects as variables.

• Write code that declares and assigns variables.

• Create and invoke synonyms.

Introducing T-SQL Batches

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

T-SQL batches are collections of one or more T-SQL statements that are submitted
to SQL Server by a client as a single unit. SQL Server operates on all the statements
in a batch at the same time when parsing, optimizing, and executing the code.

If you are a report writer tasked primarily with writing SELECT statements and not
procedures, it is still important to understand batch boundaries, because they will
affect your work with variables and parameters in stored procedures and other
routines. As you will see, you must declare a variable in the same batch in which it is
referenced. It is important, therefore, to recognize what is contained in a batch.

Batches are delimited by the client application—how you mark the end of a batch will
depend on the settings of your client. For example, the default batch terminator in
SQL Server Management Studio (SSMS) is the keyword GO. This is not a T-SQL
keyword, but is one recognized by SSMS to indicate the end of a batch.

When working with T-SQL batches, there are two important considerations to keep in
mind:

• Batches are boundaries for variable scope, which means that a variable defined in
one batch may only be referenced by other code in the same batch.

• Some statements, typically data definition statements such as CREATE VIEW,

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 4/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

may not be combined with others in the same batch. There is a complete list in the
SQL Server Technical Documentation, where you will also find additional reading.

Batches

http://go.microsoft.com/fwlink/?LinkID=402796

Working with Batches

As you have seen, batches are collections of T-SQL statements submitted as a unit
to SQL Server for parsing, optimization, and execution. Understanding how batches
are parsed will be useful in identifying error messages and behavior.

When a batch is submitted by a client (such as when you press the Execute button in
SSMS), the batch is parsed for syntax errors by the SQL Server engine. Any errors
found will cause the entire batch to be rejected; there will be no partial execution of
statements within the batch.

If the batch passes the syntax check, then SQL Server proceeds with additional steps
—resolving object names, checking permissions, and optimizing the code for
execution. Once this process completes and execution begins, statements succeed

http://go.microsoft.com/fwlink/?LinkID=402796

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

or fail individually. This is an important contrast to syntax checking. If a runtime error
occurs on one line, the next line may be executed, unless you've added error
handling to the code.

Note: Error handling will be covered in a later module.

Batch With Error

INSERT INTO dbo.t1 VALUE(1,2,N'abc');

INSERT INTO dbo.t1 VALUES(2,3,N'def');

GO

Upon submitting the batch, the following error is returned:

Msg 102, Level 15, State 1, Line 1

Incorrect syntax near 'VALUE'.

The error occurred in line 1, but the entire batch is rejected, and execution does not
continue with line 2. Even if the lines were reversed and the syntax error occurred in
the second line, the first line would not be executed because the entire batch would
be rejected.

Introducing T-SQL Variables

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 6/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

In T-SQL, as with other programming languages, variables are objects that allow
temporary storage of a value for later use. You have already encountered variables in
this course, using them to pass parameter values to stored procedures and functions.

In T-SQL, variables must be declared before they can be used. They may be
assigned a value, or initialized, when they are declared. Declaring a variable includes
providing a name and a data type, as shown below.

As you have previously learned, variables must be declared in the same batch in
which they are referenced. In other words, all T-SQL variables are local in scope to
the batch, both in visibility and lifetime. Only other statements in the same batch can
see a variable declared in the batch. A variable is automatically destroyed when the
batch ends.

Using Variables

--Declare and initialize the variables.

DECLARE @numrows INT = 3, @catid INT = 2;

--Use variables to pass the parameters to the procedure.

EXEC Production.ProdsByCategory

 @numrows = @numrows, @catid = @catid;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

GO

Variables (Transact-SQL)

http://aka.ms/Jub7kl

Working with Variables

Once you have declared a variable, you must initialize it, or assign it a value. You can
do that in three ways:

• In SQL Server 2008 or later, you may initialize a variable using the DECLARE
statement.

• In any version of SQL Server, you may assign a single (scalar) value using the
SET statement.

• In any version of SQL Server, you can assign a value to a variable using a
SELECT statement. Be sure that the SELECT statement returns exactly one row.
An empty result will leave the variable with its original value; more than one result
will cause an error.

http://aka.ms/Jub7kl

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Declaring and Assigning Values to Variables

DECLARE @var1 AS INT = 99;

DECLARE @var2 AS NVARCHAR(255);

SET @var2 = N'string';

DECLARE @var3 AS NVARCHAR(20);

SELECT @var3 = lastname FROM HR.Employees WHERE empid=1;

SELECT @var1 AS var1, @var2 AS var2, @var3 AS var3;

GO

The results are:

var1 var2 var3

---- ------ ----

99 string Davis

Working with Synonyms

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

In SQL Server, synonyms provide a method for creating a link, or alias, to an object
stored in the same database or even on another instance of SQL Server. Objects that
might have synonyms defined for them include tables, views, stored procedures, and
user-defined functions.

Synonyms can be used to make a remote object appear local or to provide an
alternative name for a local object. For example, synonyms can be used to provide
an abstraction layer between client code and the actual database objects used by the
code. The code references objects by their aliases, regardless of the object’s actual
name.

Note: You can create a synonym which points to an object that does not yet
exist. This is called deferred name resolution. The SQL Server engine will not
check for the existence of the actual object until the synonym is used at
runtime.

Managing Synonyms

CREATE SYNONYM dbo.ProdsByCategory FOR

TSQL.Production.ProdsByCategory;

GO

EXEC dbo.ProdsByCategory @numrows = 3, @catid = 2;

To create a synonym, you must have CREATE SYNONYM permission as well as
permission to alter the schema in which the synonym will be stored.

For more information, see Using Synonyms (Database Engine) in the SQL Server
Technical Documentation:

Using Synonyms (Database Engine)

http://go.microsoft.com/fwlink/?LinkID=402798

http://go.microsoft.com/fwlink/?LinkID=402798

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Demonstration: T-SQL Programming Elements
In this demonstration, you will see how to control batch execution and variable usage.

Demonstration Steps

Control Batch Execution and Variable Usage

1. Ensure that the 20761C-MIA-DC and 20761C-MIA-SQL virtual machines are
both running, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod16\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter.

5. When the script completes, press any key to continue.

6. Start SQL Server Management Studio and connect to the MIA-SQL database
engine instance using Windows authentication.

7. Open the Demo.ssmssln solution in the D:\Demofiles\Mod16\Demo folder.

8. In Solution Explorer, expand Queries, and then double-click the query 11 -
Demonstration A.sql script file.

9. Select the code under the comment Step 1, and then click Execute.

10. Select the code under the comment Step 2, and then click Execute.

11. Select the code under the comment -- Create a proc to search for category,
and then click Execute.

12. Select the code under the comment -- Set up table for batch demos, and then
click Execute.

13. Select the code under the comment Step 3, and then click Execute.

14. Select the code under the comment -- Show that the batch was successful,
and then click Execute.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

15. Select the code under the comment Step 4, and then click Execute.

16. Select the code under the comment Step 5, and then click Execute. Note the
error message.

17. Select the code under the comment --Show that no rows were inserted, and
then click Execute.

18. Select the code under the comment Step 6, and then click Execute.

19. Select the code under the comment --Run the following batch in its entirety
to show the choices, and then click Execute.

20. Select the code under the comment Step 7, and then click Execute.

21. Select the code under the comment -- Declare a parameter to search for
category, and then click Execute.

22. Select the code under the comment -- Test it locally, and then click Execute.

23. Select the code under the comment Step 8, and then click Execute.

24. Select the code under the comment Step 9, and then click Execute.

25. Select the code under the comment Step 10, and then click Execute.

26. Select the code under the comment Step 11, and then click Execute.

27. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Discovery
You have the following T-SQL script:
INSERT INTO HumanResources.PossibleSkills (SkillName, Category, Credit)
 VALUES('Database Administration', 'IT Professional', 5);
INSERT INTO HumanResources.PossibleSkills (SkillName, Category, Credit)
 VALUES('C#.NET', 'Developer', 4);
INSERT INTO HumanResources.PossibleSkills (SkillName, Category, Credit)
 VALUES('Project Management', 'Management', 'Two');

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

GO
The script generates an error on the third INSERT statement. How many new rows do
you expect to find in the PossibleSkills table after this error?

Show solution Reset

Lesson 2: Controlling Program Flow

All programming languages include elements that help you to determine the flow of
the program, or the order in which statements are executed. While not as fully
featured as languages like C#, T-SQL provides a set of control-of-flow keywords you
can use to perform logic tests and create loops containing your T-SQL data
manipulation statements. In this lesson, you will learn how to use the T-SQL IF and
WHILE keywords.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe the control-of-flow elements in T-SQL.

• Write T-SQL code using IF...ELSE blocks.

• Write T-SQL code that uses WHILE.

Understanding T-SQL Control-of-Flow Language

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SQL Server provides language elements that control the flow of program execution
within T-SQL batches, stored procedures, and multistatement user-defined functions.
These control-of-flow elements mean you can programmatically determine whether
or not to execute statements and programmatically determine the order of those
statements that should be executed.

These elements include, but are not limited to:

• IF...ELSE, which executes code based on a Boolean expression.

• WHILE, which creates a loop that executes providing a condition is true.

• BEGIN…END, which defines a series of T-SQL statements that should be
executed together.

• Other keywords (for example, BREAK, CONTINUE, WAITFOR, and RETURN),
which are used to support T-SQL control-of-flow operations.

You will learn how to use some of these elements in the next lesson.

For more information, see the SQL Server Technical Documentation:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Control-of-Flow Language (Transact-SQL)

http://aka.ms/Pvihnn

Working with IF…ELSE

The IF...ELSE structure is used in T-SQL to conditionally execute a block of code
based on a predicate. The IF statement determines whether or not the following
statement or block (if BEGIN...END is used) executes. If the predicate evaluates to
TRUE, the code in the block is executed. If the predicate evaluates to FALSE or
UNKNOWN, the block is not executed, unless the optional ELSE keyword is used to
identify another block of code.

IF Example

USE TSQL;

GO

IF OBJECT_ID('HR.Employees') IS NULL --this object does exist in the

sample database

BEGIN

 PRINT 'The specified object does not exist';

http://aka.ms/Pvihnn

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

END;

IF…ELSE Example

IF OBJECT_ID('HR.Employees') IS NULL

BEGIN

 PRINT 'The specified object does not exist';

END

ELSE

BEGIN

 PRINT 'The specified object exists';

END;

Existence Check

IF EXISTS (SELECT * FROM Sales.EmpOrders WHERE empid =5)

 BEGIN

 PRINT 'Employee has associated orders';

 END;

For more information, see the SQL Server Technical Documentation:

IF...ELSE (Transact-SQL)

http://aka.ms/mvl2f5

Working with WHILE

http://aka.ms/mvl2f5

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

The WHILE statement is used to execute code in a loop based on a predicate. Like
the IF statement, the WHILE statement determines whether the following statement
or block (if BEGIN...END is used) executes. The loop ends when the predicate
evaluates to FALSE or UNKNOWN. Typically, you control the loop with a variable
tested by the predicate and manipulated in the body of the loop itself.

WHILE Example

DECLARE @empid AS INT = 1, @lname AS NVARCHAR(20);

WHILE @empid <=5

 BEGIN

 SELECT @lname = lastname FROM HR.Employees

 WHERE empid = @empid;

 PRINT @lname;

 SET @empid += 1;

 END;

Note: Remember that if SELECT returns UNKNOWN, the variable retains its
current value. If there is no employee with an ID equal to @empid, the

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

variable doesn't change from one iteration to another. This would lead to an
infinite loop.

The result is:

Davis

Funk

Lew

Peled

Buck

For additional options within a WHILE loop, you can use the CONTINUE and BREAK
keywords to control the flow. For more information about these options, see the SQL
Server Technical Documentation:

WHILE (Transact-SQL)

http://aka.ms/Beqqci

Demonstration: Controlling Program Flow
In this demonstration, you will see how to control the flow of execution.

Demonstration Steps

Control the Flow of Execution

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

http://aka.ms/Beqqci

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 18/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

6. Select the code under the comment Step 5, and then click Execute.

7. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Select the best answer
You want to populate a table by creating 15 new rows. Before you create the rows, you
need to check that the table exists. From the following T-SQL keywords, choose the one
that you will NOT need to use.

IF

WHILE

BEGIN

END

INSERT

Check answer Show solution Reset

Lab: Programming with T-SQL

Scenario

As a junior database developer for Adventure Works, you have so far focused on
writing reports using corporate databases stored in SQL Server. To prepare for
upcoming tasks, you will be working with some basic T-SQL programming objects.

Objectives

After completing this lab, you will be able to:

• Declare variables and delimit batches.

• Use control of flow elements.

• Use variables with a dynamic SQL statement.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Use synonyms.

Lab Setup

Estimated Time: 45 minutes

Virtual machine: 20761C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa55w.rd

Exercise 1: Declaring Variables and Delimiting Batches

Scenario

You will practice how to declare variables, retrieve their values, and use them in a
SELECT statement to return specific employee information.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Declare a Variable and Retrieve the Value

3. Set the Variable Value Using a SELECT Statement

4. Use a Variable in the WHERE Clause

5. Use Variables with Batches

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should know how to declare and use variables in
T-SQL code.

Exercise 2: Using Control-of-Flow Elements

Scenario

You would like to include conditional logic in your T-SQL code to control the flow of
elements by setting different values to a variable using the IF statement.

The main tasks for this exercise are as follows:

1. Write Basic Conditional Logic

2. Check the Employee Birthdate

3. Create and Execute a Stored Procedure

4. Execute a Loop Using the WHILE Statement

5. Remove the Stored Procedure

Result: After this exercise, you should know how to control the flow of the
elements inside the T-SQL code.

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 21/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Exercise 3: Using Variables in a Dynamic SQL Statement

Scenario

You will practice how to invoke dynamic SQL code and how to pass variables to it.

The main tasks for this exercise are as follows:

1. Write a Dynamic SQL Statement That Does Not Use a Parameter

2. Write a Dynamic SQL Statement That Uses a Parameter

Result: After this exercise, you should have a basic knowledge of generating and
invoking dynamic SQL statements.

Exercise 4: Using Synonyms

Scenario

You will practice how to create a synonym for a table inside the
AdventureWorks2008R2 database and how to write a query against it.

The main tasks for this exercise are as follows:

1. Create and Use a Synonym for a Table

2. Drop the Synonym

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 22/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should know how to create and use a synonym.

Module Review and Takeaways

In this module, you have learned how to:

• Describe the language elements of T-SQL used for simple programming tasks.

• Describe batches and how they are handled by SQL Server.

• Declare and assign variables and synonyms.

• Use IF and WHILE blocks to control program flow.

Review Question(s)

Check Your Knowledge

Discovery
Can you declare a variable in one batch and reference it in multiple batches?

Show solution Reset

Check Your Knowledge

Discovery
Can you create a synonym that references an object that does not yet exist?

Show solution Reset

Check Your Knowledge

Discovery
Will a WHILE loop exit when the predicate evaluates to NULL?

Show solution Reset

