
4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Module 17: Implementing Error Handling

Contents:

Module Overview

Lesson 1: Implementing T-SQL Error Handling

Lesson 2: Implementing Structured Exception Handling

Lab: Implementing Error Handling

Module Review and Takeaways

Module Overview

When creating applications for Microsoft® SQL Server® using the T-SQL language,
appropriate handling of errors is critically important. A large number of myths
surround how error handling works in T-SQL. In this module, you will explore T-SQL
error handling, look at how it has traditionally been implemented, and how structured
exception handling can be used.

Objectives

After completing this module, you will be able to:

• Implement T-SQL error handling.

• Implement structured exception handling.

Lesson 1: Implementing T-SQL Error Handling

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

You should consider how errors can be handled or reported in T-SQL. The T-SQL
language offers a variety of error handling capabilities. This lesson covers basic T-
SQL error handling, including how you can raise errors intentionally and set up alerts
to fire when errors occur. In the next lesson, you will see how to implement a more
advanced form of error handling known as structured exception handling.

Lesson Objectives
After completing this lesson, you will be able to:

• Raise errors using the RAISERROR statement.

• Raise errors using the THROW statement.

• Use the @@ERROR system variable.

• Create custom errors.

• Create alerts that fire when errors occur.

Errors and Error Messages

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

An error indicates a problem or notable issue that arises during a database operation.
Each error includes the following elements:

• Error number. Unique number identifying the specific error.

• Error message. Text describing the error.

• Severity. Numeric indication of seriousness from 1 to 25.

• State. Internal state code for the database engine condition.

• Procedure. The name of the stored procedure or trigger in which the error
occurred.

• Line number. Which statement in the batch or procedure generated the error.

Errors can be generated by the SQL Server Database Engine in response to an
event or failure at the system level; or you can generate application errors in your
Transact-SQL code.

System Errors

System errors are predefined, and you can view them in the sys.messages system
view. When a system error occurs, SQL Server may take automatic remedial action,
depending on the severity of the error. For example, when a high-severity error
occurs, SQL Server may take a database offline or even stop the database engine
service.

Custom Errors

You can generate errors in Transact-SQL code to respond to application-specific
conditions or to customize information sent to client applications in response to
system errors. These application errors can be defined inline where they are
generated, or you can predefine them in the sys.messages table alongside the
system-supplied errors. The error numbers used for custom errors must be 50001 or
above.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 4/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

To add a custom error message to sys.messages, use sp_addmessage. The user
for the message must be a member of the sysadmin or serveradmin fixed server
roles.

sp_addmessage Syntax

sp_addmessage [@msgnum=] msg_id , [@severity=] severity , [

@msgtext=] 'msg'

 [, [@lang=] 'language']

 [, [@with_log=] { 'TRUE' | 'FALSE' }]

 [, [@replace=] 'replace']

sp_addmessage Example

sp_addmessage 50001, 10, N’Unexpected value entered’;

In addition to being able to define custom error messages, members of the sysadmin
server role can also use an additional parameter, @with_log. When set to TRUE, the
error will also be recorded in the Windows Application log. Any message written to
the Windows Application log is also written to the SQL Server error log. Be judicious
with the use of the @with_log option because network and system administrators
tend to dislike applications that are “chatty” in the system logs. However, if the error
needs to be trapped by an alert, the error must first be written to the Windows
Application log.

Note that raising system errors is not supported.

Messages can be replaced without deleting them first by using the @replace =
‘replace’ option.

The messages are customizable and different ones can be added for the same error
number for multiple languages, based on a language_id value. (Note: English
messages are language_id 1033.)

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Raising Errors Using RAISERROR

Both PRINT and RAISERROR can be used to return information or warning
messages to applications. RAISERROR allows applications to raise an error that
could then be caught by the calling process.

RAISERROR

The ability to raise errors in T-SQL makes error handling in the application easier,
because it is sent like any other system error. RAISERROR is used to:

• Help troubleshoot T-SQL code.

• Check the values of data.

• Return messages that contain variable text.

Note that using a PRINT statement is similar to raising an error of severity 10, as
shown in the sample on the slide.

Substitution Placeholders and Message Number

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 6/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note that, in the message shown in the example on the slide, %d is a placeholder for
a number and %s is a placeholder for a string. Note also that a message number was
not mentioned. When errors with message strings are raised using this syntax, they
always have error number 50000.

Raising Errors Using THROW

The THROW statement offers a simpler method of raising errors in code. Errors must
have an error number of at least 50000.

THROW

THROW differs from RAISERROR in several ways:

• Errors raised by THROW are always severity 16.

• The messages returned by THROW are not related to any entries in
sys.sysmessages.

• Errors raised by THROW only cause transaction abort when used in conjunction
with SET XACT_ABORT ON and the session is terminated.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Using @@Error

Most traditional error handling code in SQL Server applications has been created
using @@ERROR. Note that structured exception handling was introduced in SQL
Server 2005 and provides a strong alternative to using @@ERROR. It will be
discussed in the next lesson. A large amount of existing SQL Server error handling
code is based on @@ERROR, so it is important to understand how to work with it.

@@ERROR

@@ERROR is a system variable that holds the error number of the last error that
has occurred. One significant challenge with @@ERROR is that the value it holds is
quickly reset as each additional statement is executed.

@@ERROR Example

RAISERROR(N'Message', 16, 1);

IF @@ERROR <> 0

PRINT 'Error=' + CAST(@@ERROR AS VARCHAR(8));

GO

You might expect that, when the code is executed, it would return

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

the error number in a printed string. However, when the code is

executed, it returns:

Msg 50000, Level 16, State 1, Line 1

Message

Error=0

Note that the error was raised but the message printed was “Error=0”. In the first line
of the output, you can see that the error, as expected, was actually 50000, with a
message passed to RAISERROR. This is because the IF statement that follows the
RAISERROR statement was executed successfully and caused the @@ERROR
value to be reset.

For this reason, when working with @@ERROR, it is important to capture the error
number into a variable as soon as it is raised, and then continue processing with the
variable.

Capturing @@ERROR Into a Variable

DECLARE @ErrorValue int;

RAISERROR(N'Message', 16, 1);

SET @ErrorValue = @@ERROR;

IF @ErrorValue <> 0

PRINT 'Error=' + CAST(@ErrorValue AS VARCHAR(8));

When this code is executed, it returns the following output:

Msg 50000, Level 16, State 1, Line 2

Message

Error=50000

Note that the error number is correctly reported now.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Centralizing Error Handling

One other significant issue with using @@ERROR for error handling is that it is
difficult to centralize within your T-SQL code. Error handling tends to end up scattered
throughout the code. It would be possible to centralize error handling using
@@ERROR to some extent, by using labels and GOTO statements. However, this
would be frowned upon by most developers today as a poor coding practice.

Creating Alerts When Errors Occur

For certain categories of errors, administrators might create SQL Server alerts,
because they wish to be notified as soon as these occur. This can even apply to
user-defined error messages. For example, you might want to raise an alert
whenever a transaction log fills. Alerting is commonly used to bring high severity
errors (such as severity 19 or above) to the attention of administrators.

Raising Alerts

Alerts can be created for specific error messages. The alerting service works by
registering itself as a callback service with the event logging service. This means that
alerts only work on logged errors.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

There are two ways to make an error raise an alert—you can use the WITH LOG
option when raising the error or the message can be altered to make it logged by
executing sp_altermessage. The WITH LOG option affects only the current
statement. Using sp_altermessage changes the error behavior for all future use.
Modifying system errors via sp_altermessage is only possible from SQL Server 2005
SP3 or SQL Server 2008 SP1 onwards.

Demonstration: Handling Errors Using T-SQL
In this demonstration, you will see how to handle errors.

Demonstration Steps

Handle Errors

1. Ensure that the 20761C-MIA-DC and 20761C-MIA-SQL virtual machines are
both running, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod17\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter.

5. When the script completes, press any key to continue.

6. Start SQL Server Management Studio and connect to the MIA-SQL database
engine instance using Windows authentication.

7. Open the Demo.ssmssln solution in the D:\Demofiles\Mod17\Demo folder.

8. Open the 11 - Demonstration A.sql script file.

9. Select the code under the comment Step 1, and then click Execute.

10. Select the code under the comment Step 2, and then click Execute.

11. Select the code under the comment --Capture @@ERROR into a variable,
and then click Execute.

12. Select the code under the comment --Create a custom error message, and

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

then click Execute.

13. Select the code under the comment --Use a custom error message, and then
click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Discovery
You are writing some error handling in a T-SQL script. If a problem arises, you want to
raise an error with a severity of 20. Should you use RAISERROR or THROW for this
error handling?

Show solution Reset

Lesson 2: Implementing Structured Exception
Handling

Now you have an understanding of the nature of errors and basic error handling in T-
SQL, it is time to look at a more advanced form of error handling. Structured
exception handling was introduced in SQL Server 2005. You will see how to use it
and evaluate its benefits and limitations.

Lesson Objectives
After completing this lesson, you will be able to:

• Explain TRY CATCH block programming.

• Describe the role of error handling functions.

• Describe catchable versus noncatchable errors.

• Explain how TRY CATCH relates to transactions.

• Explain how errors in managed code are surfaced.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

TRY/CATCH Block Programming

Structured exception handling has been part of high level languages for some time,
after being introduced to the T-SQL language by SQL Server 2005.

TRY/CATCH Block Programming

Structured exception handling is more powerful than error handling based on the
@@ERROR system variable. It allows you to prevent code from being littered with
error handling code and to centralize that error handling code.

Centralization of error handling code also means you can focus more on the purpose
of the code rather than the error handling it contains.

TRY Block and CATCH Block

When using structured exception handling, code that might raise an error is placed
within a TRY block. TRY blocks are enclosed by BEGIN TRY and END TRY
statements.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Should a catchable error occur (most errors can be caught), execution control moves
to the CATCH block. The CATCH block is a series of T-SQL statements enclosed by
BEGIN CATCH and END CATCH statements.

Note that, while BEGIN CATCH and END TRY are separate statements, the BEGIN
CATCH must immediately follow the END TRY.

Current Limitations

High level languages often offer a try/catch/finally construct, and are often used to
release resources implicitly. There is no equivalent FINALLY block in T-SQL.

Error Handling Functions

CATCH blocks make the error-related information available throughout the duration of
the CATCH block. This includes subscopes, such as stored procedures, run from
within the CATCH block.

Error Handling Functions

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

You should recall that, when programming with @@ERROR, the value held by the
@@ERROR system variable was reset as soon as the next statement was executed.

Another key advantage of structured exception handling in T-SQL is that a series of
error handling functions has been provided and these retain their values throughout
the CATCH block. Separate functions provide each property of an error that has been
raised.

This means you can write generic error handling stored procedures that can still
access the error-related information.

Catchable vs. Noncatchable Errors

It is important to realize that, while TRY/CATCH blocks allow you to catch a much
wider range of errors than you could with @@ERROR, you cannot catch every type.

Catchable vs. Noncatchable Errors

Not all errors can be caught by TRY/CATCH blocks within the same scope where the
TRY/CATCH block exists. Often, errors that cannot be caught in the same scope can
be caught in a surrounding scope. For example, you might not be able to catch an

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

error within the stored procedure that contains the TRY/CATCH block. However, you
are likely to catch that error in a TRY/CATCH block in the code that called the stored
procedure where the error occurred.

Common Noncatchable Errors

Common examples of noncatchable errors are:

• Compile errors, such as syntax errors, that prevent a batch from compiling.

• Statement level recompilation issues that usually relate to deferred name
resolution. For example, you could create a stored procedure that refers to an
unknown table. An error is only thrown when the procedure tries to resolve the
name of the table to an objectid.

Rethrowing Errors Using THROW

If the THROW statement is used in a CATCH block without any parameters, it will
rethrow the error that caused the code to enter the CATCH block. You can use this
technique to implement error logging in the database by catching errors and logging

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

their details, and then throwing the original error to the client application, so that it
can be handled there.

In some earlier versions of SQL Server, there was no method to throw a system error.
While THROW cannot specify a system error to raise, when THROW is used without
parameters in a CATCH block, it will re-raise both system and user errors.

Errors in Managed Code

SQL CLR integration allows for the execution of managed code within SQL Server.
High level .NET languages, such as C# and VB, have detailed exception handling
available to them. Errors can be caught using standard .NET try/catch/finally blocks.

Errors in Managed Code

In general, you might wish to catch errors within managed code as much as possible.

It is important to realize, though, that any errors not handled in the managed code are
passed back to the calling T-SQL code. Whenever any error that occurs in managed
code is returned to SQL Server, it will appear to be a 6522 error. Errors can be
nested and that particular error will be wrapping the real cause of the error.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Another rare but possible cause of errors in managed code would be that the code
could execute a RAISERROR T-SQL statement via a SqlCommand object.

Demonstration: Using a TRY/CATCH Block
In this demonstration, you will see how to use a TRY/CATCH block.

Demonstration Steps

Use a TRY/CATCH Block

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Discovery
You have the following T-SQL script:
BEGIN TRY
 INSERT INTO HumanResources.PossibleSkills(SkillName, Category)
 VALUES ('Database Administration', 'IT Professional');
END TRY
DECLARE @prefix AS NVARCHAR(50) = 'There has been an error: ';
BEGIN CATCH
 PRINT @prefix + ERROR_MESSAGE();
 THROW;
END CATCH;
GO
The code will not compile and execute. What should you do to troubleshoot this code?

Show solution Reset

Lab: Implementing Error Handling

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 18/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Scenario

As a junior database developer for Adventure Works, you will be creating stored
procedures using corporate databases stored in SQL Server 2012. To create more
robust procedures, you will be implementing error handling in your code.

Objectives

After completing this lab, you will be able to:

• Redirect errors with TRY/CATCH.

• Use THROW to pass an error message to a client.

Lab Setup

Estimated Time: 30 minutes

Virtual machine: 20761C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa55w.rd

Exercise 1: Redirecting Errors with TRY/CATCH

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a Basic TRY/CATCH Construct

3. Display an Error Number and an Error Message

4. Add Conditional Logic to a CATCH Block

5. Execute a Stored Procedure in the CATCH Block

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should be able to capture and handle errors using
a TRY/CATCH construct.

Exercise 2: Using THROW to Pass an Error Message Back to a
Client

Scenario

You will practice how to pass an error message using the THROW statement, and
how to send custom error messages.

The main tasks for this exercise are as follows:

1. Rethrow the Existing Error Back to a Client

2. Add an Error Handling Routine

3. Add a Different Error Handling Routine

4. Remove the Stored Procedure

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/20

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should know how to throw an error to pass
messages back to a client.

Module Review and Takeaways

In this module, you have learned how to:

• Implement T-SQL error handling.

• Implement structured exception handling.

Review Question(s)

Check Your Knowledge

Discovery
Which error types cannot by caught by structured exception handling?

Show solution Reset

Check Your Knowledge

Discovery
Can TRY/CATCH blocks be nested?

Show solution Reset

Check Your Knowledge

Discovery
How can you use THROW outside of a CATCH block?

Show solution Reset

