
4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Module 18: Implementing Transactions

Contents:

Module Overview

Lesson 1: Transactions and the Database Engine

Lesson 2: Controlling Transactions

Lab: Implementing Transactions

Module Review and Takeaways

Module Overview

As you continue to move past SELECT statements and into data modification
operations with T-SQL, you should consider how to structure batches containing
multiple modification statements, and those that might encounter errors. In this
module, you will learn how to define transactions to control the behavior of batches of
T-SQL statements submitted to Microsoft® SQL Server®. You will also learn how to
determine whether a runtime error has occurred after work has begun, and whether
the work needs to be undone.

Objectives

After completing this module, you will be able to:

• Describe transactions and the differences between batches and transactions.

• Describe batches and how they are handled by SQL Server.

• Create and manage transactions with transaction control language (TCL)
statements.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Use SET XACT_ABORT to define SQL Server's handling of transactions outside
TRY/CATCH blocks.

Lesson 1: Transactions and the Database Engine

In this lesson, you will compare simple batches of T-SQL statements to transactions,
which allow you to control the behavior of code submitted to SQL Server. You will
decide whether special action is needed to respond to a runtime error after work has
begun and whether the work needs to be undone.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe a SQL Server database transaction.

• Describe the difference between a batch and a transaction.

• Describe how transactions extend batches.

Defining Transactions

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Earlier in this course, you learned that a batch was a collection of T-SQL statements
sent to SQL Server as a unit for parsing, optimization, and execution. A transaction
extends a batch from a unit submitted to the database engine to a unit of work
performed by the database engine. A transaction is a sequence of T-SQL statements
performed in an all-or-nothing fashion by SQL Server.

Transactions are commonly created in two ways:

• Autocommit transactions. Individual data modification statements (for example,
INSERT, UPDATE, and DELETE) submitted separately from other commands are
automatically wrapped in a transaction by SQL Server. These single-statement
transactions are automatically committed when the statement succeeds, or are
automatically rolled back when the statement encounters a runtime error.

• Explicit transactions. User-initiated transactions are created through the use of
TCL commands that begin, commit, or roll back work, based on user-issued code.
TCL is a subset of T-SQL.

The primary characteristic of a transaction is that all activity within a transaction's
boundaries must either succeed or all fail—no partial completion is permitted. User

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 4/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

transactions are typically defined to encapsulate operations that must logically occur
together, such as entries into related tables as part of a single business operation.

For example, the following batch inserts data into two tables using two INSERT
statements that are part of a single order-processing operation:

INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)

 VALUES (68,9,'2006-07-12');

INSERT INTO dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)

 VALUES (1, 2,15.20,20);

GO

Business rules might dictate that an order is complete only if the data was
successfully inserted into both tables. As you will see in the next lesson, a runtime
error in this batch might result in data being inserted into one table but not the other.
Enclosing both INSERT statements in a user-defined transaction provides the ability
to undo the data insertion in one table if the INSERT statement in the other table fails.
A simple batch does not provide this capability.

SQL Server manages resources on behalf of transactions while they are active.
These resources might include locks and entries in the transaction log to allow SQL
Server to undo changes made by the transaction, should a rollback be required.

For more information, see Microsoft Docs:

Transaction Statements (Transact-SQL)

http://aka.ms/H9jd4y

The Need for Transactions: Issues with Batches

http://aka.ms/H9jd4y

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

While batches of T-SQL statements provide a unit of code submitted to the server,
they do not include any logic for dealing with partial success when a runtime error
occurs, even with the use of structured exception handling's TRY/CATCH blocks.

Code Without Transaction

BEGIN TRY

 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)

 VALUES (68,9,'2006-07-12');

 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)

 VALUES (88,3,'2006-07-15');

 INSERT INTO

dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)

 VALUES (1, 2,15.20,20);

 INSERT INTO

dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)

 VALUES (999,77,26.20,15);

END TRY

BEGIN CATCH

 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;

END CATCH;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 6/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

If the first INSERT statement succeeds but a subsequent one fails, the new row in the
dbo.SimpleOrders table will persist after the end of the batch, even after the
execution branches to the CATCH block. This issue applies to any successful
statements, if a later statement fails with a runtime error.

Note: Remember that syntax or name-resolution errors cause the entire batch
to return an error, preventing any execution. Runtime errors only occur after
the batch has been submitted, parsed, planned, and compiled for execution.

To work around this situation, you will need to direct SQL Server to treat the batch as
a transaction. You will learn more about creating transactions in the next topic.

Transactions Extend Batches

As you have seen, runtime errors encountered during the execution of simple
batches create the possibility of partial success, which is not typically a desired
outcome. To address this, you will add code to identify the batch as a transaction by
placing the batch between BEGIN TRANSACTION and COMMIT TRANSACTION
statements. You will also add error-handling code to roll back the transaction should

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

an error occur. This error-handling code will undo the partial changes made before
the error occurred.

Transaction Example

BEGIN TRY

 BEGIN TRANSACTION;

 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)

 VALUES (68,9,'2006-07-15');

 INSERT INTO

dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)

 VALUES (99, 2,15.20,20);

 COMMIT TRANSACTION;

END TRY

BEGIN CATCH

 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;

 ROLLBACK TRANSACTION;

END CATCH;

Within the TRY block, the INSERT statements are wrapped by BEGIN
TRANSACTION and COMMIT TRANSACTION statements. This identifies the
INSERT statements as a single unit of work that must succeed or fail together. If no
runtime error occurs, the transaction commits, and the result of each INSERT is
allowed to persist in the database.

If an error occurs during the execution of the first INSERT statement, the execution
branches to the CATCH block, bypassing the second INSERT statement. The
ROLLBACK statement in the CATCH block terminates the transaction, releasing its
resources.

If an error occurs during the execution of the second INSERT statement, the
execution branches to the CATCH block. Because the first INSERT completed
successfully and added rows to the dbo.SimpleOrders table, the ROLLBACK
statement is used to undo the successful INSERT operation.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note: You will learn how to use the BEGIN TRANSACTION, COMMIT
TRANSACTION, and ROLLBACK TRANSACTION statements in the next
lesson.

Demonstration: Transactions and the Database Engine
In this demonstration, you will see how to use transactions.

Demonstration Steps

Use Transactions

1. Ensure that the 20761C-MIA-DC and 20761C-MIA-SQL virtual machines are
both running, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod18\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter.

5. Press any key to continue.

6. Start SQL Server Management Studio and connect to the MIA-SQL database
engine instance using Windows authentication.

7. On the File menu, point to Open, and then click Project/Solution.

8. Open the Demo.ssmssln solution in the D:\Demofiles\Mod18\Demo folder.

9. In Solution Explorer, in the Queries folder, open the 11 - Demonstration A.sql
script file.

10. Select the code under the comment Step 1, and then click Execute.

11. Select the code under the comment Step 2, and then click Execute.

12. Select the code under the comment Step 3, and then click Execute. Note the
error message.

13. Select the code under the comment Step 4, and then click Execute.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

14. Select the code under the comment Step 5, and then click Execute.

15. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Categorize Activity
Place each T-SQL keyword into the appropriate category. Indicate your answer by
writing the category number to the right of each item.

TCL

Please drag items here

RAISERROR

ROLLBACK TRANSACTION

INSERT

BEGIN TRANSACTION

END TRANSACTION

BEGIN TRY

BEGIN CATCH

END CATCH

END TRY

COMMIT TRANSACTION

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Non-TCL

Please drag items here

Check answer Show solution Reset

Lesson 2: Controlling Transactions

To control how SQL Server treats your data modification statements, you need to use
TCL statements. By enclosing batches between BEGIN TRANSACTION and
COMMIT or ROLLBACK TRANSACTION statements, you will identify the units of
work to be performed together and provide points of recovery in your code.

Lesson Objectives
After completing this lesson, you will be able to:

• Mark the beginning of units of work with BEGIN TRANSACTION.

• Mark successful completion of batches with COMMIT TRANSACTION.

• Undo failed transactions with ROLLBACK TRANSACTION.

• Describe how to use XACT_ABORT to automatically roll back failed T-SQL
statements.

BEGIN TRANSACTION

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SQL Server will automatically wrap individual data modification statements (for
example, INSERT, UPDATE, and DELETE) in their own transactions, which auto-
commit on success and auto-rollback on failure. While this behavior is transparent to
the user, you have seen the results of this when you have executed a batch of T-SQL
statements with partial success. Successful INSERTS have written their values to the
target tables, while failed statements have not left values behind.

If you need to identify a group of statements as a transactional unit of work, you
cannot rely on this automatic behavior. Instead, you will need to manually specify the
boundaries of the unit. To mark the start of a transaction, use the BEGIN
TRANSACTION statement, which may also be stated as BEGIN TRAN.

If you are using T-SQL structured exception handling, you will want to begin the
transaction inside a TRY block. Within the exception handler, you may decide
whether to COMMIT or ROLLBACK the transaction, depending on its outcome.

When you identify your own transactions with BEGIN TRANSACTION, consider the
following:

• Once you initiate a transaction, you must properly end it. Use COMMIT
TRANSACTION on success or ROLLBACK TRANSACTION on failure.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• While transactions may be nested, inner transactions will be rolled back, even if
committed, if the outer transaction rolls back. Therefore, nested transactions are
not typically useful in user code.

• Transactions last until a COMMIT TRANSACTION or a ROLLBACK
TRANSACTION is issued, or until the originating connection is dropped, at which
point SQL Server will roll back the transaction automatically.

• A transaction's scope is the connection in which it was started. Transactions
cannot span connections (except by bound sessions, a deprecated feature that is
beyond the scope of this course).

• SQL Server may take and hold locks on resources during the lifespan of the
transaction. To reduce concurrency issues, consider keeping your transactions as
short as possible. For more information on locking in SQL Server, see course
20762C: Developing Microsoft SQL Server Databases.

For more information on BEGIN TRANSACTION statements, see Microsoft Docs:

BEGIN TRANSACTION (Transact-SQL)

http://aka.ms/E3u6jb

For more information on nested transactions, see the SQL Server Technical
Documentation:

Nesting Transactions

http://go.microsoft.com/fwlink/?LinkID=402857

COMMIT TRANSACTION

http://aka.ms/E3u6jb
http://go.microsoft.com/fwlink/?LinkID=402857

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

When the statements in your transaction have completed without error, you need to
instruct SQL Server to end the transaction, making the modifications permanent and
releasing resources that were held on behalf of the transaction. To do this, use the
COMMIT TRANSACTION (or COMMIT TRAN) statement.

If you are using T-SQL structured exception handling, you will want to COMMIT the
transaction inside the TRY block in which you began it.

COMMIT TRANSACTION Example

BEGIN TRY

 BEGIN TRANSACTION

 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)

 VALUES (68,9,'2006-07-12');

 INSERT INTO

dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)

 VALUES (1, 2,15.20,20);

 COMMIT TRANSACTION

END TRY

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note: The previous example does not contain logic to determine if the
transaction should be committed or rolled back. It is relying on the success of
the statements to provide the logic to implement error handling.

ROLLBACK TRANSACTION

To end a failed transaction, you will use the ROLLBACK command. ROLLBACK
undoes any modifications made to data during the transaction, reverting it to the state
it was in when the transaction started. This includes rows inserted, deleted, or
updated, in addition to objects created. ROLLBACK also allows SQL Server to
release resources, such as locks, held during the transaction's lifespan.

If you are using T-SQL structured exception handling, you will want to ROLLBACK
the transaction inside the CATCH block that follows the TRY block containing the
BEGIN and COMMIT statements.

ROLLBACK TRANSACTION Example

BEGIN TRY

 BEGIN TRANSACTION;

 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

p (, p ,)

 VALUES (68,9,'2006-07-12');

 INSERT INTO

dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)

 VALUES (1, 2,15.20,20);

 COMMIT TRANSACTION;

END TRY

BEGIN CATCH

 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;

 ROLLBACK TRANSACTION;

END CATCH;

Before issuing a ROLLBACK command, you might wish to test to see if a transaction
is active. You can use the T-SQL XACT_STATE function to determine if there is an
active transaction to be rolled back. This can help avoid errors being raised inside the
CATCH block.

XACT_STATE returns the following values:

XACT_STATE Results Description

0 There is no active user transaction.

1 The current request has an active, committable, user transaction.

-1 The current request has an active user transaction, but an error has
occurred. The transaction can only be rolled back.

The following example shows the use of XACT_STATE to issue a ROLLBACK
statement only if the transaction is active but cannot be committed:

BEGIN TRY

 BEGIN TRANSACTION;

 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)

 VALUES (68,9,'2006-07-12');

 INSERT INTO

dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)

()

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

 VALUES (1, 2,15.20,20);

 COMMIT TRANSACTION;

END TRY

BEGIN CATCH

 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;

 IF (XACT_STATE()) = -1

 BEGIN

 ROLLBACK TRANSACTION;

 END;

 ELSE -- provide for other outcomes of XACT_STATE()

END CATCH;

For more information, see Transaction Statements (Transact-SQL) in Microsoft Docs:

Transaction Statements (Transact-SQL)

http://aka.ms/h9jd4y

Using XACT_ABORT

http://aka.ms/h9jd4y

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

As you have seen, SQL Server does not automatically roll back transactions when
errors occur. In this module, most of the discussion about controlling transactions has
assumed the use of TRY/CATCH blocks to perform the logic and either commit or roll
back a transaction. For situations in which you are not using TRY/CATCH blocks,
another option exists for automatically rolling back a transaction when an error
occurs. The XACT_ABORT setting can be used to specify whether SQL Server rolls
back the current transaction when a runtime error occurs during the execution of T-
SQL code.

By default, XACT_ABORT is off. Change the XACT_ABORT setting with the SET
command:

SET XACT_ABORT ON;

When SET XACT_ABORT is ON, the entire transaction is terminated and rolled back
on error, unless the error occurs in a TRY block. An error in a TRY block leaves the
transaction open but not committable, despite the setting of XACT_ABORT.

For more information, see Microsoft Docs:

SET XACT_ABORT (Transact-SQL)

http://aka.ms/Qehdhl

Demonstration: Controlling Transactions
In this demonstration, you will see how to control transactions.

Demonstration Steps

Control Transactions

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

http://aka.ms/Qehdhl

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 18/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute. Note the
error message.

8. Select the code under the comment Step 7, and then click Execute.

9. Select the code under the comment Step 8, and then click Execute.

10. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Discovery
You have executed the following batch of T-SQL statements:
BEGIN TRY
 BEGIN TRANSACTION;
 INSERT INTO dbo.SimpleOrders(custid, empid, orderdate)
 VALUES (68,9,'2006-07-12');
 INSERT INTO dbo.SimpleOrderDetails(orderid,productid,unitprice,qty)
 VALUES (1, 2,15.20,20);
END TRY
BEGIN CATCH
 SELECT ERROR_NUMBER() AS ErrNum, ERROR_MESSAGE() AS ErrMsg;
 ROLLBACK TRANSACTION;
END CATCH;
A fellow query writer is now receiving errors resulting from locks on database records.
What can you do to troubleshoot this problem?

Show solution Reset

Lab: Implementing Transactions

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Scenario

As a junior database developer for Adventure Works, you will be creating stored
procedures using corporate databases stored in SQL Server. To create more robust
procedures, you will be implementing transactions in your code.

Objectives

After completing this lab, you will be able to:

• Control transactions.

• Add error handling to a CATCH block.

Lab Setup

Estimated Time: 30 minutes

Virtual machine: 20761C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa55w.rd

Exercise 1: Controlling Transactions with BEGIN, COMMIT, and
ROLLBACK

Scenario

The IT department has supplied different examples of INSERT statements to practice
executing multiple statements inside one transaction. You will practice how to start a
transaction, commit or abort it, and return the database to its state before the
transaction.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

2. Commit a Transaction

3. Delete the Previously Inserted Rows from the HR.Employees Table

4. Open a Transaction and Use the ROLLBACK Statement

5. Clear the Modifications Against the HR.Employees Table

Result: After this exercise, you should be able to control a transaction using the
BEGIN TRAN, COMMIT, and ROLLBACK statements.

Exercise 2: Adding Error Handling to a CATCH Block

Scenario

In the previous module, you learned how to add error handling to T-SQL code. Now
you will practice how to properly control a transaction by testing to see if an error
occurred.

The main tasks for this exercise are as follows:

1. Observe the Provided T-SQL Code

2. Delete the Previously Inserted Row in the HR.Employees Table

3. Abort Both INSERT Statements If an Error Occurs

4. Clear the Modifications Against the HR.Employees Table

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 21/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should have a basic understanding of how to
control a transaction inside a TRY/CATCH block to efficiently handle possible
errors.

Module Review and Takeaways

In this module, you have learned how to:

• Describe transactions and the differences between batches and transactions.

• Describe batches and how they are handled by SQL Server.

• Create and manage transactions with transaction control language (TCL)
statements.

• Use SET XACT_ABORT to define SQL Server's handling of transactions outside
TRY/CATCH blocks.

Review Question(s)

Check Your Knowledge

Discovery
What happens to a nested transaction when the outer transaction is rolled back?

Show solution Reset

Check Your Knowledge

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 22/22

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Discovery
When a runtime error occurs in a transaction and SET XACT_ABORT is ON, is the
transaction always automatically rolled back?

Show solution Reset

