
4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Module 4: Querying Multiple Tables

Contents:

Module Overview

Lesson 1: Understanding Joins

Lesson 2: Querying with Inner Joins

Lesson 3: Querying with Outer Joins

Lesson 4: Querying with Cross Joins and Self Joins

Lab: Querying Multiple Tables

Module Review and Takeaways

Module Overview

In real-world environments, it is likely that the data you need to query is stored in
multiple locations. You have already learned how to write basic single-table queries.
In this module, you will learn how to write queries that combine data from multiple
sources in Microsoft® SQL Server®. You will write queries containing joins, which
allow you to retrieve data from two (or more) tables, based on data relationships
between the tables.

In this module, you will learn how to write queries that combine data from multiple
sources in Microsoft SQL Server.

Objectives

After completing this module, you will be able to:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Describe how multiple tables may be queried in a SELECT statement using joins.

• Write queries that use inner joins.

• Write queries that use outer joins.

• Write queries that use self joins and cross joins.

Lesson 1: Understanding Joins

In this lesson, you will learn the fundamentals of joins in SQL Server. You will
discover how the FROM clause in a T-SQL SELECT statement creates intermediate
virtual tables that will be consumed by subsequent phases of the query. You will learn
how an unrestricted combination of rows from two tables yields a Cartesian product.
This module also covers the common join types in T-SQL multitable queries.

The FROM Clause and Virtual Tables

You have already learned about the logical order of operations performed when SQL
Server processes a query. You will recall that the FROM clause of a SELECT
statement is the first phase to be processed. This clause determines which table or

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

tables will be the source of rows for the query. As you will see in this module, this
holds true whether you are querying a single table or bringing together multiple tables
as the source of your query. To learn about the additional capabilities of the FROM
clause, it is useful to think of the clause function as creating and populating a virtual
table. This virtual table will hold the output of the FROM clause and be used
subsequently by other phases of the SELECT statement, such as the WHERE
clause. As you add extra functionality, such as join operators, to a FROM clause, it
will be helpful to think of the purpose of the FROM clause elements as either to add
rows to, or remove rows from, the virtual table.

Reader Aid: The virtual table created by a FROM clause is a logical entity
only. In SQL Server, no physical table is created, whether persistent or
temporary, to hold the results of the FROM clause, as it is passed to the
WHERE clause or other subsequent phases.

SELECT Syntax

SELECT ...

FROM <table> AS <alias>;

You have learned that the FROM clause is processed first, and as a result, any table
aliases you create there may be referenced in the SELECT clause. You will see
numerous examples of table aliases in this module. While these aliases are optional,
except in the case of self-join queries, you will quickly see how they can be a
convenient tool when writing queries. Compare the following two queries, which have
the same output but differ in their use of aliases. (Note that the examples use a JOIN
clause, which will be covered later in this module.)

Without Table Aliases

USE TSQL ;

GO

SELECT Sales.Orders.orderid, Sales.Orders.orderdate,

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 4/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Sales.OrderDetails.productid,Sales.OrderDetails.unitprice,

 Sales.OrderDetails.qty

FROM Sales.Orders

JOIN Sales.OrderDetails ON Sales.Orders.orderid =

Sales.OrderDetails.orderid ;

With Table Aliases

USE TSQL ;

GO

SELECT o.orderid, o.orderdate,

 od.productid, od.unitprice,

 od.qty

FROM Sales.Orders AS o

JOIN Sales.OrderDetails AS od ON o.orderid = od.orderid ;

As you can see, the use of table aliases improves the readability of the query, without
affecting the performance. It is strongly recommended that you use table aliases in
your multitable queries.

Reader Aid: Once a table has been designated with an alias in the FROM
clause, it is best practice to use the alias when referring to columns from that
table in other clauses.

Join Terminology: Cartesian Product

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

When learning about writing multitable queries in T-SQL, it is important to understand
the concept of Cartesian products. In mathematics, this is the product of two sets.
The product of a set of two items and a set of six is a set of 12 items—or 6 x 2. In
databases, a Cartesian product is the result of joining every row of one input table to
all rows of another input table. The product of a table with 10 rows and a table with
100 rows is a result set with 1,000 rows. For most T-SQL queries, a Cartesian
product is not the desired outcome. Typically, a Cartesian product occurs when two
input tables are joined without considering any logical relationships between them.
With no information about relationships, the SQL Server query processor will output
all possible combinations of rows. While this can have some practical applications,
such as creating a table of numbers or generating test data, it is not typically useful
and can have severe performance effects. You will learn a useful application of
Cartesian joins later in this module.

Reader Aid: In the next topic, you will compare two different methods for
specifying the syntax of a join. You will see that one method may lead you
toward writing accidental Cartesian product queries.

Overview of Join Types

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 6/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

To populate the virtual table produced by the FROM clause in a SELECT statement,
SQL Server uses join operators. These add or remove rows from the virtual table,
before it is handed off to subsequent logical phases of the SELECT statement:

• A cross join operator (CROSS JOIN) adds all possible combinations of the two
input tables' rows to the virtual table. Any filtering of the rows will happen in a
WHERE clause. For most querying purposes, this operator is to be avoided.

• An inner join operator (INNER JOIN, or just JOIN) first creates a Cartesian
product, and then filters the results using the predicate supplied in the ON clause,
removing any rows from the virtual table that do not satisfy the predicate. The
inner join is a very common type of join for retrieving rows with attributes that
match across tables, such as matching Customers to Orders by a common custid.

• An outer join operator (LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER
JOIN) first creates a Cartesian product, and like an inner join, filters the results to
find rows that match in each table. However, all rows from one table are
preserved, and added back to the virtual table after the initial filter is applied.
NULLs are placed on attributes where no matching values are found.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Reader Aid: Unless otherwise qualified with CROSS or OUTER, the JOIN
operator defaults to an INNER join.

T-SQL Syntax Choices

Throughout the history of SQL Server, the product has changed to keep pace with
variations in the American National Standards Institute (ANSI) standards for the SQL
language. One of the most notable places where these changes are visible is in the
syntax for the join operator in a FROM clause. In ANSI SQL-89, no ON operator was
defined. Joins were represented in a comma-separated list of tables, and any
filtering, such as for an inner join, was performed in the WHERE clause. This syntax
is still supported by SQL Server, but due to the complexity of representing the filters
for an outer join in the WHERE clause, in addition to any other filtering, it is not
recommended here. Additionally, if a WHERE clause is accidentally omitted, ANSI
SQL-89-style joins can easily become Cartesian products and cause performance
problems.

Cartesian Product

USE TSQL;

GO

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

GO

/* This is ANSI SQL-89 syntax for an inner join, with the filtering

performed in the WHERE clause. */

SELECT c.companyname, o.orderdate

FROM Sales.Customers AS c, Sales.Orders AS o

WHERE c.custid = o.custid;

....

(830 row(s) affected)

/*

This is ANSI SQL-89 syntax for an inner join, omitting the WHERE

clause and causing an inadvertent Cartesian join.

*/

SELECT c.companyname, o.orderdate

FROM Sales.Customers AS c, Sales.Orders AS o;

...

(75530 row(s) affected)

With the advent of the ANSI SQL-92 standard, support for the ON clause was added.
T-SQL also supports this syntax. Joins are represented in the FROM clause by using
the appropriate JOIN operator. The logical relationship between the tables, which
becomes a filter predicate, is represented with the ON clause.

JOIN Clause

SELECT c.companyname, o.orderdate

FROM Sales.Customers AS c JOIN Sales.Orders AS o

ON c.custid = o.custid;

Reader Aid: The ANSI SQL-92 syntax makes it more difficult to create
accidental Cartesian joins. Once the keyword JOIN has been added, a syntax
error will be raised if an ON clause is missing.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Demonstration: Understanding Joins
In this demonstration, you will see how to use joins.

Demonstration Steps

Use Joins

1. Ensure that the 20761C-MIA-DC and 20761C-MIA-SQL virtual machines are
both running, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod04\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. At the command prompt, type y, and then press Enter. When the script has
completed, press any key.

5. Start SQL Server Management Studio and connect to the MIA-SQL database
engine instance using Windows authentication.

6. Open the Demo.ssmssln solution in the D:\Demofiles\Mod04\Demo folder.

7. In Solution Explorer, expand Queries, and then double-click the 11 -
Demonstration A.sql script file.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2, and then click Execute.

10. Select the code under the comment Step 3, and then click Execute.

11. Select the code under the comment Step 4, and then click Execute.

12. Select the code under the comment Step 5, and then click Execute. Note the
error message.

13. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Select the best answer
You have the following T-SQL query:
SELECT o.ID AS OrderID, o.CustomerName, p.ProductName, p.ModelNumber,
FROM Sales.Orders AS o
JOIN Sales.Products AS p
ON o.ProductID = p.ID;
Which of the following types of join will the query perform?

A cross join

An inner join

An outer left join

An outer right join

Check answer Show solution Reset

Lesson 2: Querying with Inner Joins

In this lesson, you will learn how to write inner join queries, the most common type of
multitable query in a business environment. By expressing a logical relationship
between the tables, you will retrieve only those rows with matching attributes present
in both.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe inner joins.

• Write queries using inner joins.

• Describe the syntax of an inner join.

Understanding Inner Joins

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

T-SQL queries that use inner joins are the most common types to solve many
business problems, especially in highly normalized database environments. To
retrieve data that has been stored across multiple tables, you will often need to
reassemble it via inner join queries. As you have learned, an inner join begins its
logical processing phase as a Cartesian product, which is then filtered to remove any
rows that don't match the predicate.

SQL-89 and SQL-92 Join Syntax Compared

--ANSI SQL-89 syntax

SELECT c.companyname, o.orderdate

FROM Sales.Customers AS c, Sales.Orders AS o

WHERE c.custid = o.custid;

--ANSI SQL-92 syntax

SELECT c.companyname, o.orderdate

FROM Sales.Customers AS c JOIN Sales.Orders AS o

ON c.custid = o.custid;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

From a performance standpoint, you will find that the query optimizer in SQL Server
does not favor one syntax over the other. However, as you learn about additional
types of joins, especially outer joins, you will likely decide that you prefer to use the
SQL-92 syntax and filter in the ON clause. Keeping the join filter logic in the ON
clause and leaving other data filtering in the WHERE clause will make your queries
easier to read and test.

ANSI-92 Join

1)SELECT c.companyname, o.orderdate

2)FROM Sales.Customers AS c

3)JOIN Sales.Orders AS o

4)ON c.custid = o.custid;

As you learned earlier, the FROM clause will be processed before the SELECT
clause. Let’s track the processing, beginning with line 2:

• The FROM clause designates the Sales.Customers table as one of the input
tables, giving it the alias of “c”.

• The JOIN operator in line 3 reflects the use of an INNER join (the default type in T-
SQL) and designates Sales.Orders as the other input table, which has an alias of
“o”.

• SQL Server will perform a logical Cartesian join on these tables and pass the
results to the next phase in the virtual table. (Note that the physical processing of
the query may not actually perform the Cartesian product operation, depending on
the optimizer's decisions.)

• Using the ON clause, SQL Server will filter the virtual table, retaining only those
rows where a custid value from the “c” table (Sales.Customers has been replaced
by the alias) matches a custid from the “o” table (Sales.Orders has been replaced
by an alias).

• The remaining rows are left in the virtual table and handed off to the next phase in
the SELECT statement. In this example, the virtual table is next processed by the
SELECT clause, and only two columns are returned to the client application.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• The result? A list of customers who have placed orders. Any customers who have
never placed an order have been filtered out by the ON clause, as have any
orders that happen to have a customer ID that doesn't correspond to an entry in
the customer list.

Inner Join Syntax

When writing queries using inner joins, consider the following guidelines:

• As you have seen, table aliases are preferred, not only for the SELECT list, but
also for expressing the ON clause.

• Inner joins may be performed on a single matching attribute, such as an orderid,
or on multiple matching attributes, such as the combination of orderid and
productid. Joins that match multiple attributes are called composite joins.

• The order in which tables are listed and joined in the FROM clause does not
matter to the SQL Server optimizer. (This will not be the case for OUTER JOIN
queries in the next topic.) Conceptually, joins will be evaluated from left to right.

• Use the JOIN keyword once for each two tables in the FROM list. For a two-table

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

query, specify one join. For a three-table query, you will use JOIN twice—once
between the first two tables, and once again between the output of the first two
tables and the third table.

Inner Join Examples

The following are some examples of inner joins:

Inner Join Example

SELECT c.categoryid, c.categoryname, p.productid, p.productname

FROM Production.Categories AS c

JOIN Production.Products AS p

ON c.categoryid = p.categoryid;

Inner Join Example

SELECT DISTINCT e.city, e.country

FROM Sales.Customers AS c

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

FROM Sales.Customers AS c

JOIN HR.Employees AS e

ON c.city = e.city AND c.country = e.country;

Reader Aid: The demonstration code for this lesson also uses the DISTINCT
operator to filter duplicates.

This next example shows how an inner join may be extended to include more than
two tables. Note that the Sales.OrderDetails table is joined not to the Sales.Orders
table, but to the output of the JOIN between Sales.Customers and Sales.Orders.
Each instance of JOIN ... ON performs its own population and filtering of the virtual
output table. The SQL Server query optimizer determines the order in which the joins
and filtering will be performed.

Inner Join Example

SELECT c.custid, c.companyname, o.orderid, o.orderdate,

od.productid, od.qty

FROM Sales.Customers AS c

JOIN Sales.Orders AS o

ON c.custid = o.custid

JOIN Sales.OrderDetails AS od

ON o.orderid = od.orderid;

Demonstration: Querying with Inner Joins
In this demonstration, you will see how to use inner joins.

Demonstration Steps

Use Inner Joins

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Discovery
You have the following T-SQL query:
SELECT HumanResources.Employees.ID, HumanResources.Employers.ID AS
CompanyID,
 HumanResources.Employees.Name, HumanResources.Employers.Name AS
CompanyName
FROM HumanResources.Employees
JOIN HumanResources.Employers
ON HumanResources.Employees.EmployerID = HumanResources.Employers.ID;
How can you improve the readability of this query?

Show solution Reset

Lesson 3: Querying with Outer Joins

In this lesson, you will learn how to write queries that use outer joins. While not as
common as inner joins, the use of outer joins in a multitable query can provide an
alternative view of your business data. As with inner joins, you will express a logical
relationship between the tables. However, you will retrieve not only rows with
matching attributes, but also all rows present in one of the tables, whether or not
there is a match in the other table.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Lesson Objectives
After completing this lesson, you will be able to:

• Understand the purpose and function of outer joins.

• Write queries using outer joins.

• Combine an OUTER JOIN operator in a FROM clause with a nullability test in a
WHERE clause to reveal nonmatching rows.

Understanding Outer Joins

In the previous lesson, you learned how to use inner joins to match rows in separate
tables. As you saw, SQL Server built the results of an inner join query by filtering out
rows that failed to meet the conditions expressed in the ON clause predicate. The
result is that only rows that matched from both tables were displayed. With an outer
join, you may choose to display all the rows from one table, along with those that
match from the second table. Let's look at an example, then explore the process.

Inner Join

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 18/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

USE AdventureWorks;

GO

SELECT c.CustomerID, soh.SalesOrderID

FROM Sales.Customer AS c JOIN Sales.SalesOrderHeader AS soh

ON c.CustomerID = soh.CustomerID

--(31465 row(s) affected)

Note that this example uses the AdventureWorks2016 database for these samples.
When written as an inner join, the query returns 31,465 rows. These rows represent a
match between customers and orders. Only those CustomerIDs that are in both
tables will appear in the results. Only customers who have placed orders will be
returned.

Outer Left Join

USE AdventureWorks;

GO

SELECT c.CustomerID, soh.SalesOrderID

FROM Sales.Customer AS c LEFT OUTER JOIN Sales.SalesOrderHeader AS

soh

ON c.CustomerID = soh.CustomerID

--(32166 row(s) affected)

This example uses a LEFT OUTER JOIN operator which, as you will learn, directs
the query processor to preserve all rows from the table on the left (Sales.Customer)
and displays the SalesOrderID values for matching rows in Sales.SalesOrderHeader.
However, there are more rows returned in this example. All customers are returned,
whether or not they have placed an order. As you will see in this lesson, an outer join

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

will display all the rows from one side of the join or another, whether or not they
match.

What does an outer join query display in columns where there was no match? In this
example, there are no matching orders for 701 customers. In place of the
SalesOrderID column, SQL Server will output NULL where values are otherwise
missing.

Outer Join Syntax

When writing queries using outer joins, consider the following guidelines:

• As you have seen, table aliases are preferred not only for the SELECT list, but
also for expressing the ON clause.

• Outer joins are expressed using the keywords LEFT, RIGHT, or FULL preceding
OUTER JOIN. The purpose of the keyword is to indicate which table (on which
side of the keyword JOIN) should be preserved and have all its rows displayed,
match or no match.

• As with inner joins, outer joins may be performed on a single matching attribute,
such as an orderid, or on multiple matching attributes, such as orderid and

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

productid.

• Unlike inner joins, the order in which tables are listed and joined in the FROM
clause does matter, as it will determine whether you choose LEFT or RIGHT for
your join.

• Multitable joins are more complex when an OUTER JOIN is present. The
presence of NULLs in the results of an outer join may cause issues if the
intermediate results are then joined, via an inner join, to a third table. Rows with
NULLs may be filtered out by the second join's predicate.

• To display only rows where no match exists, add a test for NULL in a WHERE
clause following an OUTER JOIN predicate.

Outer Join Examples

The following are some examples of outer joins:

Outer Join Example

USE TSQL;

GO

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 21/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

GO

SELECT c.custid, c.companyname, o.orderid, o.orderdate

FROM Sales.Customers AS c

LEFT OUTER JOIN Sales.Orders AS o

ON c.custid =o.custid;

Outer Join Example

SELECT c.custid, c.companyname, o.orderid, o.orderdate

FROM Sales.Customers AS c

LEFT OUTER JOIN Sales.Orders AS o

ON c.custid =o.custid

WHERE o.orderid IS NULL;

Demonstration: Querying with Outer Joins
In this demonstration, you will see how to use outer joins.

Demonstration Steps

Use Outer Joins

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Select the code under the comment Step 7, and then click Execute.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 22/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

9. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Select the best answer
You have a table named PoolCars and a table named Bookings in your
ResourcesScheduling database. You want to return all the pool cars for which there are
zero bookings. Which of the following queries should you use?

SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc, ResourcesScheduling.Bookings AS b
WHERE pc.ID = b.CarID;

SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc
RIGHT OUTER JOIN ResourcesScheduling.Bookings AS b
ON pc.ID = b.CarID;

SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc
JOIN ResourcesScheduling.Bookings AS b
ON pc.ID = b.CarID;

SELECT pc.ID, pc.Make, pc.Model, pc.LicensePlate
FROM ResourcesScheduling.PoolCars AS pc
LEFT OUTER JOIN ResourcesScheduling.Bookings AS b
ON pc.ID = b.CarID
WHERE b.BookingID IS NULL;

Check answer Show solution Reset

Lesson 4: Querying with Cross Joins and Self Joins

In this lesson, you will learn about additional types of joins, which are useful in some
more specialized scenarios.

Lesson Objectives

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 23/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

After completing this lesson, you will be able to:

• Describe a use for a cross join.

• Write queries that use cross joins.

• Describe a use for a self join.

• Write queries that use self joins.

Understanding Cross Joins

Cross join queries create a Cartesian product that, as you have learned in this
module so far, are to be avoided. Although you have seen a means to create one
with ANSI SQL-89 syntax, you haven't seen how or why to do so with ANSI SQL-92.
This topic will revisit cross joins and Cartesian products.

To explicitly create a Cartesian product, you would use the CROSS JOIN operator.

Cross Join

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 24/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SELECT ...

FROM table1 AS t1 CROSS JOIN table2 AS t2;

While this is not typically a desired output, there are a few practical applications for
writing an explicit cross join:

• Creating a table of numbers, with a row for each possible value in a range.

• Generating large volumes of data for testing. When cross joined to itself, a table
with as few as 100 rows can readily generate 10,000 output rows with very little
work from you.

Cross Join Syntax

When writing queries with CROSS JOIN, consider the following:

• There is no matching of rows performed, and therefore no ON clause is required.

• To use ANSI SQL-92 syntax, separate the input table names with the CROSS
JOIN operator.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 25/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Cross Join Examples

The following is an example of using CROSS JOIN to create all combinations of two
input sets:

Cross Join Example

SELECT e1.firstname, e2.lastname

FROM HR.Employees e1 CROSS JOIN HR.Employees e2;

Understanding Self Joins

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 26/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

So far, the joins you have learned about have involved separate multiple tables.
There may be scenarios in which you need to compare and retrieve data stored in
the same table. For example, in a classic human resources application, an
Employees table might include information about the supervisor of each employee in
the employee's own row. Each supervisor is also listed as an employee. To retrieve
the employee information and match it to the related supervisor, you can use the
table twice in your query, joining it to itself for the purposes of the query.

There are other scenarios in which you will want to compare rows in a table with one
another. As you have seen, it's fairly easy to compare columns in the same row using
T-SQL, but how to compare values from different rows (such as a row which stores a
starting time with another row in the same table that stores a corresponding stop
time) is less obvious. Self joins are a useful technique for these types of queries.

To accomplish tasks like this, you should consider the following guidelines:

• Create two instances of the same table in the FROM clause, and join them as
needed, using inner or outer joins.

• Use table aliases to create two separate aliases for the same table. At least one of
these must have an alias.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 27/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Use the ON clause to provide a filter using separate columns from the same table.

The following example, which you will examine closely in the next topic, illustrates
these guidelines:

Self Join Example

SELECT e.empid ,e.lastname AS empname,e.title,e.mgrid, m.lastname AS

mgrname

 FROM HR.Employees AS e

 JOIN HR.Employees AS m

 ON e.mgrid=m.empid;

This yields results like the following:

empid empname title mgrid mgrname

----- ------------ --------------------- ----- -------

2 Funk Vice President, Sales 1 Davis

3 Lew Sales Manager 2 Funk

4 Peled Sales Representative 3 Lew

5 Buck Sales Manager 2 Funk

6 Suurs Sales Representative 5 Buck

7 King Sales Representative 5 Buck

8 Cameron Sales Representative 3 Lew

9 Dolgopyatova Sales Representative 5 Buck

Self Join Examples

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 28/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

The following are some examples of self joins:

Self Join Example

SELECT e.empid ,e.lastname AS empname,e.title,e.mgrid, m.lastname AS

mgrname

 FROM HR.Employees AS e

 JOIN HR.Employees AS m

 ON e.mgrid=m.empid;

Self Join Example

SELECT e.empid ,e.lastname AS empname,e.title,e.mgrid, m.lastname AS

mgrname

 FROM HR.Employees AS e

 LEFT OUTER JOIN HR.Employees AS m

 ON e.mgrid=m.empid;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 29/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Demonstration: Querying with Cross Joins and Self Joins
In this demonstration, you will see how to use self joins and cross joins.

Demonstration Steps

Use Self Joins and Cross Joins

1. In Solution Explorer, open the 41 - Demonstration D.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Discovery
You have two tables named FirstNames and LastNames. You want to generate a set of
fictitious full names from this data. There are 150 entries in the FirstNames table and
250 entries in the LastNames table. You use the following query:
SELECT (f.Name + ' ' + l.Name) AS FullName
FROM FirstNames AS f
CROSS JOIN LastNames AS l
How many fictitious full names will be returned by this query?

Show solution Reset

Lab: Querying Multiple Tables

Scenario

You are an Adventure Works business analyst who will be writing reports using
corporate databases stored in SQL Server. You have been given a set of business

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 30/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

requirements for data and you will write T-SQL queries to retrieve the specified data
from the databases. You notice that the data is stored in separate tables, so you will
need to write queries using various join operations.

Objectives

After completing this lab, you will be able to:

• Write queries that use inner joins.

• Write queries that use multiple-table inner joins.

• Write queries that use self joins.

• Write queries that use outer joins

• Write queries that use cross joins.

Lab Setup

Estimated Time: 50 minutes

Virtual machine: 20761C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa55w.rd

Exercise 1: Writing Queries That Use Inner Joins

Scenario

You no longer need the supplied mapping information between categoryid and
categoryname because you now have the Production.Categories table with the
needed mapping rows. Write a SELECT statement using an inner join to retrieve the
productname column from the Production.Products table and the categoryname
column from the Production.Categories table.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 31/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement That Uses an Inner Join

Result: After this exercise, you should know how to use an inner join between two
tables.

Exercise 2: Writing Queries That Use Multiple-Table Inner Joins

Scenario

The sales department would like a report of all customers who placed at least one
order, with detailed information about each one. A developer prepared an initial
SELECT statement that retrieves the custid and contactname columns from the
Sales.Customers table and the orderid column from the Sales.Orders table. You
should observe the supplied statement and add additional information from the
Sales.OrderDetails table.

The main tasks for this exercise are as follows:

1. Execute the T-SQL Statement

2. Apply the Needed Changes and Execute the T-SQL Statement

3. Change the Table Aliases

4. Add an Additional Table and Columns

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 32/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should have a better understanding of why aliases
are important and how to do a multiple-table join.

Exercise 3: Writing Queries That Use Self Joins

Scenario

The HR department would like a report showing employees and their managers.
They want to see the lastname, firstname, and title columns from the HR.Employees
table for each employee, and the same columns for the employee’s manager.

The main tasks for this exercise are as follows:

1. Write a Basic SELECT Statement

2. Write a Query That Uses a Self Join

Result: After this exercise, you should have an understanding of how to write T-
SQL statements that use self joins.

Exercise 4: Writing Queries That Use Outer Joins

Scenario

The sales department was satisfied with the report you produced in exercise 2. Now
sales staff would like to change the report to show all customers, even if they did not

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 33/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

have any orders, and still include order information for the customers who did. You
need to write a SELECT statement to retrieve all rows from Sales.Customers
(columns custid and contactname) and the orderid column from the table
Sales.Orders.

The main task for this exercise is as follows:

• Write a SELECT Statement That Uses an Outer Join

Result: After this exercise, you should have a basic understanding of how to write
T-SQL statements that use outer joins.

Exercise 5: Writing Queries That Use Cross Joins

Scenario

The HR department would like to prepare a personalized calendar for each
employee. The IT department supplied you with T-SQL code that will generate a table
with all dates for the current year. Your job is to write a SELECT statement that would
return all rows in this new calendar date table for each row in the HR.Employees
table.

The main tasks for this exercise are as follows:

1. Execute the T-SQL Statement

2. Write a SELECT Statement That Uses a Cross Join

3. Drop the HR.Calendar Table

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 34/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should have an understanding of how to write T-
SQL statements that use cross joins.

Module Review and Takeaways

In this module, you have learned how to:

• Describe how multiple tables may be queried in a SELECT statement using joins.

• Write queries that use inner joins.

• Write queries that use outer joins.

• Write queries that use self joins and cross joins.

Best Practice: Table aliases should always be defined when joining tables.
Joins should be expressed using SQL-92 syntax, with JOIN and ON
keywords.

Review Question(s)

Check Your Knowledge

Discovery
How does an inner join differ from an outer join?

Show solution Reset

Check Your Knowledge

Discovery
Which join types include a logical Cartesian product?

Show solution Reset

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 35/35

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Check Your Knowledge

Discovery
Can a table be joined to itself?

Show solution Reset

