
4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Module 5: Sorting and Filtering Data

Contents:

Module Overview

Lesson 1: Sorting Data

Lesson 2: Filtering Data with Predicates

Lesson 3: Filtering Data with TOP and OFFSET-FETCH

Lesson 4: Working with Unknown Values

Lab: Sorting and Filtering Data

Module Review and Takeaways

Module Overview

In this module, you will learn how to enhance a query to limit the number of rows that
the query returns, and control the order in which the rows are displayed.

Earlier in this course, you learned that, according to relational theory, sets of data do
not include any definition of a sort order. Therefore, if you require the output of a
query to be displayed in a certain order, you should add an ORDER BY clause to
your SELECT statement. In this module, you will learn how to write a query using
ORDER BY to control the display order.

You have already learned how to build a FROM clause to return rows from one or
more tables. It is unlikely that you will always want to return all rows from the source.
For performance reasons, in addition to the needs of your client application or report,
you will want to limit which rows are returned. As you will learn in this module, you
can limit the rows selected with a WHERE clause based on a predicate; you can also

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

limit the number of rows with a TOP, or OFFSET and FETCH clause, based on the
order of the rows selected.

When you work with real-world data in queries, you may encounter situations where
values are missing. It is important to write queries that can handle missing values
correctly. In this module, you will learn about handling missing and unknown results.

Objectives

Filter data with predicates in the WHERE clause:

• Sort data using ORDER BY.

• Filter data in the SELECT clause with TOP.

• Filter data with OFFSET and FETCH.

Lesson 1: Sorting Data

In this lesson, you will learn how to add an ORDER BY clause to a query to control
the order of rows displayed in the output of the query.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe the ORDER BY clause.

• Describe the ORDER BY clause syntax.

• List examples of the ORDER BY clause.

Using the ORDER BY Clause

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

In the logical order of query processing, ORDER BY is the last phase of a SELECT
statement to be executed. ORDER BY enables you to control the sorting of rows as
they are output from the query to the client application. Without an ORDER BY
clause, SQL Server does not guarantee the order of rows—in keeping with relational
theory.

ORDER BY Clause

SELECT <select_list>

FROM <table_source>

ORDER BY <order_by_list> [ASC|DESC];

ORDER BY can take several types of element in its list:

Columns by name. Additional columns beyond the first specified in the list will be
used as tiebreakers for nonunique values in the first column.

Column aliases. Remember that ORDER BY is processed after the SELECT clause
and therefore has access to aliases defined in the SELECT list.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 4/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Columns by position in the SELECT clause. This is not recommended, because of
diminished readability and the extra care required to keep the ORDER BY list up to
date with any changes made to the SELECT list column order.

• Columns not detailed in the SELECT list, but part of tables listed in the
FROM clause. If the query uses a DISTINCT option, any columns in the ORDER
BY list must be included in the SELECT list.

Note: ORDER BY may also include a COLLATE clause, which provides a way
to sort by a specific character collation, instead of the collation of the column
in the table. Collations will be discussed further later in this course.

In addition to specifying which columns should be used to determine the sort order,
you may also control the direction of the sort by using ASC for ascending (A-Z, 0-9)
or DESC for descending (Z-A, 9-0). Ascending sorts are the default. Each column
may be provided with a separate order, as in the following example:

Ascending and Descending Sort

USE TSQL;

GO

SELECT hiredate, firstname, lastname

FROM HR.Employees

ORDER BY hiredate DESC, lastname ASC;

For additional information on the ORDER BY clause, see Microsoft Docs:

ORDER BY Clause (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402718

ORDER BY Clause Syntax

http://go.microsoft.com/fwlink/?LinkID=402718

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

ORDER BY Clause

ORDER BY <order_by_list>

OFFSET <offset_value> ROW|ROWS FETCH FIRST|NEXT <fetch_value>

ROW|ROWS ONLY

Note: The use of the OFFSET-FETCH option in the ORDER BY clause will be
covered later in this module.

ORDER BY List

ORDER BY <column_name_1>, <column_name_2>;

ORDER BY List Example

ORDER BY country, region, city;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 6/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

ORDER BY an Alias

SELECT <column_name_1> AS alias1, <column_name_2> AS alias2

FROM <table source>

ORDER BY alias1;

ORDER BY Using Column Alias Example

SELECT orderid, custid, YEAR(orderdate) AS orderyear

FROM Sales.Orders

ORDER BY orderyear;

Note: See the previous topic for the syntax and usage of ASC or DESC to
control sort order.

ORDER BY Clause Examples

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

The following are examples of common queries using ORDER BY to sort the output
for display. All queries use the TSQL sample database.

ORDER BY Example 1

SELECT orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate;

ORDER BY Example 2

SELECT orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC;

ORDER BY Example 3

SELECT hiredate, firstname, lastname

FROM HR.Employees

ORDER BY hiredate DESC, lastname ASC;

Demonstration: Sorting Data
In this demonstration, you will see how to sort data using the ORDER BY clause.

Demonstration Steps

Sort Data Using The ORDER BY Clause

1. Ensure that the MT17B-WS2016-NAT, 20761C-MIA-DC, and 20761C-MIA-SQL
virtual machines are running, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

2. Start SQL Server Management Studio and connect to your Azure instance of
the AdventureWorksLT database engine instance using SQL Server
authentication.

3. Open the Demo.ssmssln solution in the D:\Demofiles\Mod05\Demo folder.

4. In Solution Explorer, expand Queries, and then double-click 11 -
Demonstration A.sql.

5. In the Available Databases list, click ADVENTUREWORKSLT.

6. Select the code under the comment Step 1, and then click Execute.

7. Select the code under the comment Step 2, and then click Execute.

8. Select the code under the comment Step 3, and then click Execute.

9. Select the code under the comment Step 4, and then click Execute.

10. Select the code under the comment Step 5, and then click Execute.

11. Select the code under the comment Step 6, and then click Execute.

12. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Discovery
If you declare an alias for a column in the SELECT clause, you cannot use that alias in
the WHERE clause—but you can use it in the ORDER BY clause. Why is this?

Show solution Reset

Lesson 2: Filtering Data with Predicates

When querying SQL Server, you will mostly want to retrieve only a subset of all rows
stored in the table(s) listed in the FROM clause. This is especially true as data
volumes grow. To limit which rows are returned, you will typically use the WHERE

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

clause in the SELECT statement. In this lesson, you will learn how to construct
WHERE clauses to filter out rows that do not match the predicate.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe the WHERE clause.

• Describe the syntax of the WHERE clause.

Filtering Data in the WHERE Clause with Predicates

To limit the rows that are returned by your query, you will need to add a WHERE
clause to your SELECT statement, following the FROM clause. WHERE clauses are
constructed from a search condition which, in turn, is written as a predicate
expression. The predicate provides a logical filter through which each row must pass.
Only rows returning TRUE in the predicate will be output to the next logical phase of
the query.

When writing a WHERE clause, keep the following considerations in mind:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Your predicate must be expressed as a logical condition, evaluating to TRUE or
FALSE. (The evaluation may be NULL when working with missing values or NULL.
See Lesson 4 for more information.)

• Only rows for which the predicate evaluates as TRUE will be passed through the
filter.

• Values of FALSE or UNKNOWN will be filtered out.

• Column aliases declared in the SELECT clause of the query cannot be used in the
WHERE clause predicate.

• Remember that, logically, the WHERE clause is the next phase in query execution
after FROM, so the WHERE clause will be processed before other clauses, such
as SELECT. One consequence of this is that the WHERE clause will be unable to
refer to column aliases created in the SELECT clause. If you have created
expressions in the SELECT list, you will need to repeat the expressions for use in
the WHERE clause.

Filtering Example

SELECT orderid, custid, YEAR(orderdate) AS ordyear

FROM Sales.Orders

WHERE YEAR(orderdate) = 2006;

Incorrect Column Alias in WHERE Clause

SELECT orderid, custid, YEAR(orderdate) AS ordyear

FROM Sales.Orders

WHERE ordyear = 2006;

The error message points to the use of the column alias in Line 3 of the batch:

Msg 207, Level 16, State 1, Line 3

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Msg 207, Level 16, State 1, Line 3

Invalid column name 'ordyear'.

From the perspective of query performance, the use of effective WHERE clauses can
provide a significant positive impact on SQL Server. Rather than return all rows to the
client for post-processing, a WHERE clause causes SQL Server to filter data on the
server side. This can reduce network traffic and memory usage on the client. SQL
Server developers and administrators can also create indexes to support commonly-
used predicates, further improving performance.

WHERE Clause Syntax

WHERE Clause Syntax

WHERE <search_condition>

Typical WHERE Clause

WHERE <column> <operator> <expression>

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

WHERE Clause Example

SELECT contactname, country

FROM Sales.Customers

WHERE country = N'Spain';

Any of the logical operators introduced in the T-SQL language module earlier in this
course may be used in a WHERE clause predicate.

WHERE Clause Example

SELECT orderid, orderdate

FROM Sales.Orders

WHERE orderdate > '20070101';

Note: The representation of dates as strings delimited by quotation marks will
be covered in the next module.

In addition to using logical operators, literals, or constants in a WHERE clause, you
may also use several T-SQL options in your predicate:

Predicates and Operators Description

IN Determines whether a specified value matches any
value in a subquery or a list.

BETWEEN Specifies an inclusive range to test.

LIKE Determines whether a specific character string
matches a specified pattern.

AND Combines two Boolean expressions and returns
TRUE only when both are TRUE.

OR Combines two Boolean expressions and returns
TRUE if either is TRUE.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Predicates and Operators Description
U e t e s U

NOT Reverses the result of a search condition.

Note: The use of LIKE to match patterns in character-based data will be
covered in the next module.

WHERE with OR Example

SELECT custid, companyname, country

FROM Sales.Customers

WHERE country = N'UK' OR country = N'Spain';

WHERE with IN Example

SELECT custid, companyname, country

FROM Sales.Customers

WHERE country IN (N'UK',N'Spain');

Range Example

SELECT orderid, custid, orderdate

FROM Sales.Orders

WHERE orderdate >= '20070101' AND orderdate <= '20080630';

BETWEEN Operator

SELECT orderid, custid, orderdate

FROM Sales.Orders

WHERE orderdate BETWEEN '20070101' AND '20080630';

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note: The use of comparison operators with date and time data types
requires special consideration. For more information, see Module 6.

Demonstration: Filtering Data with Predicates
In this demonstration, you will see how to filter data in a WHERE clause.

Demonstration Steps

Filter Data in a WHERE Clause

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. In the Available Databases list, click ADVENTUREWORKSLT.

3. Select the code under the comment Step 1, and then click Execute.

4. Select the code under the comment Step 2, and then click Execute.

5. Select the code under the comment Step 3, and then click Execute. Note the
error message.

6. Select the code under the comment Step 4, and then click Execute.

7. Select the code under the comment Step 5, and then click Execute.

8. Select the code under the comment Step 6, and then click Execute.

9. Select the code under the comment Step 7, and then click Execute.

10. Select the code under the comment Step 8, and then click Execute.

11. Select the code under the comment Step 9, and then click Execute.

12. Select the code under the comment Step 10, and then click Execute.

13. Select the code under the comment Step 11, and then click Execute.

14. Keep SQL Server Management Studio open for the next demonstration.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Check Your Knowledge

Discovery
You have a table named Employees that includes a column named StartDate. You want
to find who started in any year other than 2014. What query would you use?

Show solution Reset

Lesson 3: Filtering Data with TOP and OFFSET-
FETCH

In the previous lesson, you wrote queries that filtered rows, based on data stored
within them. You can also write queries that filter ranges of rows, based either on a
specific number to retrieve, or one range of rows at a time. In this lesson, you will
learn how to use a TOP option to limit ranges of rows in the SELECT clause. You will
also learn how to limit ranges of rows using the OFFSET-FETCH option of an
ORDER BY clause.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe the TOP option.

• Describe the OFFSET-FETCH clause.

• Describe the syntax of the OFFSET-FETCH clause.

Filtering in the SELECT Clause Using the TOP Option

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

When returning rows from a query, you may need to limit the total number of rows
returned, in addition to filtering with a WHERE clause. The TOP option, a Microsoft-
proprietary extension of the SELECT clause, will let you specify a number of rows to
return, either as an ordinal number or as a percentage of all candidate rows.

TOP Option

SELECT TOP (N) <column_list>

FROM <table_source>

WHERE <search_condition>

ORDER BY <order list>;

TOP Example

SELECT TOP (5) orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note: The TOP operator depends on an ORDER BY clause to provide
meaningful precedence to the rows selected. In the absence of ORDER BY,
there is no guarantee for which rows will be returned. In the previous example,
any five orders might be returned if there wasn’t an ORDER BY clause.
In addition to specifying a fixed number of rows to be returned, the TOP
keyword also accepts the WITH TIES option, which will retrieve any rows with
values that might be found in the selected top N rows.

Without the WITH TIES Option

SELECT TOP (5) orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC;

The results show five rows with two distinct orderdate values:

orderid custid orderdate

----------- ----------- -----------------------

11077 65 2008-05-06 00:00:00.000

11076 9 2008-05-06 00:00:00.000

11075 68 2008-05-06 00:00:00.000

11074 73 2008-05-06 00:00:00.000

11073 58 2008-05-05 00:00:00.000

(5 row(s) affected)

With the WITH TIES Option

SELECT TOP (5) WITH TIES orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 18/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

This modified query returns the following results:

orderid custid orderdate

----------- ----------- -----------------------

11077 65 2008-05-06 00:00:00.000

11076 9 2008-05-06 00:00:00.000

11075 68 2008-05-06 00:00:00.000

11074 73 2008-05-06 00:00:00.000

11073 58 2008-05-05 00:00:00.000

11072 20 2008-05-05 00:00:00.000

11071 46 2008-05-05 00:00:00.000

11070 44 2008-05-05 00:00:00.000

(8 row(s) affected)

The decision to include WITH TIES will depend on your knowledge of the source
data, its potential for unique values, and the requirements of the query you are
writing.

To return a percentage of the row count, use the PERCENT option with TOP instead
of a fixed number.

Returning a Percentage of Records

SELECT TOP (10) PERCENT orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC;

TOP (N) PERCENT may also be used with the WITH TIES option.

Note: For the purposes of row count, TOP (N) PERCENT will round up to the
nearest integer.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

For additional information about the TOP clause, see Microsoft Docs:

TOP (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402719

Filtering in the ORDER BY Clause Using OFFSET-FETCH

While the TOP option is used by many SQL Server professionals as a method for
retrieving only a certain range of rows, it also has disadvantages:

• TOP is proprietary to T-SQL and SQL Server.

• TOP does not support skipping a range of rows.

• Because TOP depends on an ORDER BY clause, you cannot use one sort order
to establish the rows filtered by TOP and another to determine the output display.

To address a number of these concerns, Microsoft added the OFFSET-FETCH
extension to the ORDER BY clause.

http://go.microsoft.com/fwlink/?LinkID=402719

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Like TOP, OFFSET-FETCH enables you to return only a range of the rows selected
by your query. However, it adds the functionality to supply a starting point (an offset)
and a value to specify how many rows you would like to return (a fetch value). This
provides a convenient technique for paging through results.

When paging, you will need to consider that each query with an OFFSET-FETCH
clause runs independently of any previous or subsequent query. There is no server-
side state maintained, and you will need to track your position through a result set via
client-side code.

As you will see in the next topic, OFFSET-FETCH has been written to allow a more
natural English language syntax.

OFFSET-FETCH is supported in SQL Server 2012, 2014, and 2016.

For more information about the OFFSET-FETCH clause, see Using OFFSET and
FETCH to limit the rows returned in Microsoft Docs:

ORDER BY Clause (Transact-SQL)

http://go.microsoft.com/fwlink/?LinkID=402718

OFFSET-FETCH Syntax

http://go.microsoft.com/fwlink/?LinkID=402718

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 21/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

OFFSET-FETCH Clause

OFFSET { integer_constant | offset_row_count_expression } { ROW |

ROWS }

 [FETCH { FIRST | NEXT } {integer_constant |

fetch_row_count_expression } { ROW | ROWS } ONLY]

To use OFFSET-FETCH, you will supply a starting OFFSET value (which may be
zero) and an optional number of rows to return, as in the following example:

OFFSET FETCH Example 1

SELECT orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate, orderid DESC

OFFSET 10 ROWS FETCH NEXT 10 ROWS ONLY;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 22/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

As you can see in the syntax definition, the OFFSET clause is required, but the
FETCH clause is not. If the FETCH clause is omitted, all rows following OFFSET will
be returned. You will also find that the keywords ROW and ROWS are
interchangeable, as are FIRST and NEXT, which enables a more natural syntax.

To ensure the accuracy of the results, especially as you move from page to page of
data, it is important to construct an ORDER BY clause that will provide unique
ordering and yield a deterministic result. Although unlikely, due to SQL Server’s query
optimizer, it is technically possible for a row to appear on more than one page, unless
the range of rows is deterministic.

Note: To use OFFSET-FETCH for paging, you might supply the OFFSET
value, in addition to row count expressions, in the form of variables or
parameters. You will learn more about variables and stored procedure
parameters in later modules of this course.

The following are some examples of using OFFSET-FETCH in T-SQL queries—all of
them use the AdventureWorks sample database:

OFFSET-FETCH Example 2

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC

OFFSET 0 ROWS FETCH FIRST 50 ROWS ONLY;

OFFSET-FETCH Example 3

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC

OFFSET 50 ROWS FETCH NEXT 50 ROWS ONLY;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 23/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note: Unlike those found in any previous modules, examples of OFFSET-
FETCH must be executed by SQL Server 2012 or later. OFFSET-FETCH is
not supported in SQL Server 2008 R2 or earlier.

Demonstration: Filtering Data with TOP and OFFSET-
FETCH
In this demonstration, you will see how to filter data using TOP and OFFSET-FETCH.

Demonstration Steps

Filter Data Using TOP and OFFSET-FETCH

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. In the Available Databases list, ensure ADVENTUREWORKSLT is selected.

3. Select the code under the comment Step 1, and then click Execute.

4. Select the code under the comment Step 2, and then click Execute.

5. Select the code under the comment Step 3, and then click Execute.

6. Select the code under the comment Step 4, and then click Execute.

7. Select the code under the comment Step 5, and then click Execute.

8. Select the code under the comment Step 6, and then click Execute.

9. Select the code under the comment Step 7, and then click Execute.

10. Select the code under the comment Step 8, and then click Execute.

11. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Select the best answer

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 24/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

You have a table named Products in your Sales database. You are creating a paged
display of products in an application that shows 20 products on each page, ordered by
name. Which of the following queries would return the third page of products?

SELECT ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC
OFFSET 60 ROWS FETCH NEXT 20 ROWS ONLY

SELECT ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC
OFFSET 40 ROWS FETCH NEXT 20 ROWS ONLY;

SELECT TOP (20) ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC

SELECT TOP (20) WITH TIES ProductID, ProductName, ProductNumber
FROM Sales.Products
ORDER BY ProductName ASC

Check answer Show solution Reset

Lesson 4: Working with Unknown Values

Unlike traditional Boolean logic, predicate logic in SQL Server needs to account for
missing values and deal with cases where the result of a predicate is unknown. In
this lesson, you will learn how three-valued logic accounts for unknown and missing
values; how SQL Server uses NULL to mark missing values; and how to test for
NULL in your queries.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe three-valued logic.

• Describe the use of NULL in queries.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 25/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Three-Valued Logic

Earlier in this course, you learned that SQL Server uses predicate logic as a
framework for logical tests that return TRUE or FALSE. This is true for logical
expressions where all values being tested are present. If you know the values of both
X and Y, you can safely determine whether X>Y is TRUE or FALSE.

However, in SQL Server, not all data being compared may be present. You need to
plan for and act on the possibility that some data is missing or unknown. Values in
SQL Server may be missing but applicable, such as the value of a middle initial that
has not been supplied for an employee. It may also be missing but inapplicable, such
as the value of a middle initial for an employee who has no middle name. In both
cases, SQL Server will mark the missing value as NULL. A NULL is neither TRUE nor
FALSE but is a mark for UNKNOWN, which represents the third value in three-valued
logic.

As discussed above, you can determine whether X>Y is TRUE or FALSE when you
know the values of both X and Y. But what does SQL Server return for the expression
X>Y when Y is missing? SQL Server will return an UNKNOWN, marked as NULL.
You will need to account for the possible presence of NULL in your predicate logic,
and in the values stored in columns marked with NULL. You will need to write queries

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 26/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

that use three-valued logic to account for three possible outcomes—TRUE, FALSE,
and UNKNOWN.

Handling NULL in Queries

Once you have acquired a conceptual understanding of three-valued logic and NULL,
you need to understand the different mechanisms SQL Server uses for handling
NULLs. Keep in mind the following guidelines:

• Query filters, such as ON, WHERE, and the HAVING clause, treat NULL like a
FALSE result. A WHERE clause that tests for a <column_value> = N will not return
rows when the comparison is FALSE. Nor will it return rows when either the
column value or the value of N is NULL.

ORDER BY Query That Includes NULL in Results

SELECT empid, lastname, region

FROM HR.Employees

ORDER BY region ASC; --Ascending sort order explicitly included

for clarity.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 27/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

This returns the following, with all employees whose region is missing (marked as
NULL) sorted first:

empid lastname region

----------- -------------------- ---------------

5 Buck NULL

6 Suurs NULL

7 King NULL

9 Dolgopyatova NULL

8 Cameron WA

1 Davis WA

2 Funk WA

3 Lew WA

4 Peled WA

Note: A common question about controlling the display of NULL in queries
is whether NULLs can be forced to the end of a result set. As you can see,
the ORDER BY clause sorts the NULLs together and first—a behavior you
cannot override.

• ORDER BY treats NULLs as if they were the same value and always sorts NULLs
together, putting them first in a column. Make sure you test the results of any
queries in which the column being used for sort order contains NULLs, and
understand the impact of ascending and descending sorts on NULLs.

• In ANSI-compliant queries, a NULL is never equivalent to another value, even
another NULL. Queries written to test NULL with an equality will fail to return
correct results.

Incorrectly Testing for NULL

SELECT empid, lastname, region

FROM HR.Employees

WHERE region = NULL;

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 28/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

This returns unexpected results:

empid lastname region

----------- -------------------- ---------------

(0 row(s) affected)

• Use the IS NULL (or IS NOT NULL) operator rather than equal (or not equal).

Correctly Testing for NULL

SELECT empid, lastname, region

FROM HR.Employees

WHERE region IS NULL;

This returns correct results:

empid lastname region

----------- -------------------- ---------------

5 Buck NULL

6 Suurs NULL

7 King NULL

9 Dolgopyatova NULL

(4 row(s) affected)

Demonstration: Working with NULL

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 29/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

In this demonstration, you will see how to test for NULL.

Demonstration Steps

Test for Null

1. In Solution Explorer, open the 41 - Demonstration D.sql script file.

2. In the Available Databases list, ensure ADVENTUREWORKSLT is selected.

3. Select the code under the comment Step 2, and then click Execute.

4. Select the code under the comment Step 3, and then click Execute.

5. Select the code under the comment Step 4, and then click Execute.

6. Select the code under the comment Step 5, and then click Execute.

7. Select the code under the comment Step 6, and then click Execute.

8. Select the code under the comment Step 7, and then click Execute.

9. Close SQL Server Management Studio.

Check Your Knowledge

Discovery
You have the following query:
SELECT e.Name, e.Age
FROM HumanResources.Employees AS e
WHERE YEAR(e.Age) < 1990;
Several employees have asked for their age to be removed from the Human Resources
database, and this requested action has been applied to the database. Will the above
query return these employees?

Show solution Reset

Lab: Sorting and Filtering Data

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 30/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Scenario

You are an Adventure Works business analyst who will be writing reports using
corporate databases stored in SQL Server. You have been provided with a set of data
business requirements and will write T-SQL queries to retrieve the specified data
from the databases. You will need to retrieve only some of the available data, and
return it to your reports in a specified order.

Objectives

After completing this lab, you will be able to:

• Write queries that filter data using a WHERE clause.

• Write queries that sort data using an ORDER BY clause.

• Write queries that filter data using the TOP option.

• Write queries that filter data using an OFFSET-FETCH clause.

Lab Setup

Estimated Time: 60 minutes

Virtual machine: 20761C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa55w.rd

Exercise 1: Write Queries that Filter Data Using a WHERE Clause

Scenario

The marketing department is working on several campaigns for existing customers
and staff need to obtain different lists of customers, depending on several business
rules. Based on these rules, you will write the SELECT statements to retrieve the
needed rows from the Sales.Customers table.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 31/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement Using a WHERE Clause

3. Write a SELECT Statement Using an IN Predicate in the WHERE Clause

4. Write a SELECT Statement Using a LIKE Predicate in the WHERE Clause

5. Observe the T-SQL Statement Provided by the IT Department

6. Write a SELECT Statement to Retrieve Customers Without Orders

Result: After this exercise, you should be able to filter rows of data from one or
more tables by using WHERE predicates with logical operators.

Exercise 2: Write Queries that Sort Data Using an ORDER BY
Clause

Scenario

The sales department would like a report showing all the orders with some customer
information. An additional request is that the result be sorted by the order dates and
the customer IDs. From previous modules, remember that the order of the rows in the
output of a query without an ORDER BY clause is not guaranteed. Because of this,
you will have to write a SELECT statement that uses an ORDER BY clause.

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 32/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

The main tasks for this exercise are as follows:

1. Write a SELECT Statement Using an ORDER BY Clause

2. Apply the Needed Changes and Execute the T-SQL Statement

3. Order the Result by the firstname Column

Result: After this exercise, you should know how to use an ORDER BY clause.

Exercise 3: Write Queries that Filter Data Using the TOP Option

Scenario

The sales department wants to have some additional reports that show the last
invoiced orders and the top 10 percent of the most expensive products being sold.

The main tasks for this exercise are as follows:

1. Writing Queries That Filter Data Using the TOP Clause

2. Use the OFFSET-FETCH Clause to Implement the Same Task

3. Write a SELECT Statement to Retrieve the Most Expensive Products

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 33/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should have an understanding of how to apply the
TOP option in the SELECT clause of a T-SQL statement.

Exercise 4: Write Queries that Filter Data Using the OFFSET-FETCH
Clause

Scenario

In this exercise, you will implement a paging solution for displaying rows from the
Sales.Orders table because the total number of rows is high. In each page of a
report, the user should only see 20 rows.

The main tasks for this exercise are as follows:

1. OFFSET-FETCH Clause to Fetch the First 20 Rows

2. Use the OFFSET-FETCH Clause to Skip the First 20 Rows

3. Write a Generic Form of the OFFSET-FETCH Clause for Paging

Result: After this exercise, you will be able to use OFFSET-FETCH to work page-
by-page through a result set returned by a SELECT statement.

Review Question(s)

Check Your Knowledge

Discovery
What is the difference between filtering using the TOP option, and filtering using the
WHERE clause?

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 34/34

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Show solution Reset

Module Review and Takeaways

In this module, you have learned how to enhance a query to limit the number of rows
that the query returns, and control the order in which the rows are displayed.

Review Question(s)

Check Your Knowledge

Discovery
Does the physical order of rows in a SQL Server table guarantee any sort order in
queries using the table?

Show solution Reset

Check Your Knowledge

Discovery
You have the following query:
SELECT p.PartNumber, p.ProductName, o.Quantity
FROM Sales.Products AS p
LEFT OUTER JOIN Sales.OrderItems AS o
ON p.ID = o.ProductID
ORDER BY o.Quantity ASC
You have one new product that has yet to receive any orders. Will this product appear at
the top or the bottom of the results?

Show solution Reset

