
4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Module 7: Using DML to Modify Data

Contents:

Module Overview

Lesson 1: Adding Data to Tables

Lesson 2: Modifying and Removing Data

Lesson 3: Generating Automatic Column Values

Lab: Using DML to Modify Data

Module Review and Takeaways

Module Overview

Transact-SQL (T-SQL) data manipulation language (DML) is the subset of the SQL
Language that contains commands to add and modify data column values, within
rows, within tables. In this module, you will learn the basics of using INSERT to add
column values to rows within tables, using UPDATE to make changes to column
values to rows within tables, and using DELETE to remove complete rows from
tables. You can also use the TRUNCATE command to delete all rows within a table
quickly, without incurring an overhead that protects accidental deletion of rows when
using the DELETE statement.

You will also learn how to generate sequences of numbers using the IDENTITY
property of a column, in addition to the sequence object, which is a stand-alone
object that can be applied to many columns—in the same or different tables—to gain
consistency between identities within different tables.

You can use the MERGE command to change existing columns within rows of a
destination table, based on the values stored within a source table, and comparisons

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

between the source and destination table contents.

Objectives

After completing this module, you will be able to:

• Write T-SQL statements that insert column values into rows within the tables.

• Write T-SQL statements that modify values in columns, within rows, within tables.

• Write T-SQL statements that remove existing rows from tables.

• Appreciate the importance of the WHERE clause when using data modification
language (DML).

• Appreciate T-SQL statements that automatically generate values for columns and
see how this affects you when using DML.

• Understand the use of the MERGE statement to compare and contrast two tables
and direct different DML statements, based on their content comparisons.

Lesson 1: Adding Data to Tables

In this lesson, you will learn how to write queries that add new rows with column
values to tables.

Lesson Objectives
After completing this lesson, you will be able to:

• Write queries that use the INSERT statement to add data to tables.

• Use the INSERT statement with SELECT and EXEC clauses.

• Use SELECT INTO to create and populate tables without resort to data definition
language (DDL).

• Describe the behavior of default constraints when rows are inserted into a table.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Using INSERT to Add Data

In SQL, the INSERT statement is used to add one or more rows to a table. There are
several forms of the statement.

INSERT Syntax

INSERT [INTO] <Table or View> [(column_list)] -- column_list is

optional but the code is safer with it

VALUES ([ColumnName or an expression or DEFAULT or NULL], .…n)

With this form, called INSERT VALUES, you can specify the columns that will have
values placed in them and the order in which the data will be presented for each row
inserted into the table. In addition, you can provide the values for those columns as a
comma separated list.

When inserting values, the keyword DEFAULT means the predefined value that
should be presented where a column value has not been listed, but a value is
required.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 4/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

When inserting values, the keyword NULL means the predefined value that should be
presented where a column value has not been listed and a value is not required.

The following example shows the use of the INSERT VALUES statement:

INSERT VALUES Example

USE TSQL

GO

INSERT INTO Sales.OrderDetails (OrderID, ProductID, UnitPrice, Qty,

Discount)

VALUES (10248, 39, 18, 2, 0.05)

If the column list is omitted, a column value or the keyword (DEFAULT or NULL) must
be specified for each column, in the order in which they are defined in the table. If a
value is not specified for a column that does not have a value automatically assigned,
such as through an IDENTITY column, the INSERT statement will fail.

In addition to inserting a single row at a time, the INSERT VALUES statement can be
used to insert multiple rows by providing multiple comma separated sets of values,
themselves separated by commas, like this:

(1,2,3), (3,2,1), (2,2,2).

Insert Rows

USE TSQL

GO

INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty,

discount)

VALUES (10249,39,18,2,0.05), (12002,39,18,5,0.10);

-- Some people prefer this alternative layout for multiple row

i t

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

inserts

INSERT INTO Sales.OrderDetails(orderid, productid, unitprice, qty,

discount)

VALUES (10250,39,18,2,0.05)

, (10251,39,18,5,0.10)

, (10252,39,18,2,0.05)

, (10254,39,18,5,0.10);

INSERT (Transact-SQL)

http://aka.ms/ifsc6i

Table Value Constructor (Transact-SQL)

http://aka.ms/rnwb93

Using INSERT with Data Providers

Beyond specifying a literal set of values in an INSERT statement, T-SQL also
supports using the output of other operations to provide values for INSERT. You can

http://aka.ms/ifsc6i
http://aka.ms/rnwb93

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 6/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

pass the results of a SELECT clause or the output of a stored procedure to the
INSERT clause.

To use the SELECT statement with an INSERT statement, build a SELECT clause to
replace the VALUES clause. With this form, called INSERT SELECT, you can insert
the set of rows returned by a SELECT query into a destination table. The use of
INSERT SELECT presents the same considerations as INSERT VALUES:

• You may optionally specify a column list following the table name.

• You must provide column values or DEFAULT, or NULL, for each column.

INSERT SELECT

INSERT [INTO] <table or view> [(column_list)]

SELECT <column_list> FROM <table_list>...;

Result sets from stored procedures (or even dynamic batches) may also be used as
input to an INSERT statement. This form of INSERT, called INSERT EXEC, is
conceptually similar to INSERT SELECT and will present the same considerations.

Inserting Rows into a Table from a Stored Procedure

INSERT INTO Production.Products (productID, productname, supplierid,

categoryid, unitprice)

EXEC Production.AddNewProducts;

GO

Note: The example above references a procedure that is not supplied with the
course database. Code to create it appears in the demonstration for this
module.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Using SELECT INTO

In T-SQL, you can use the SELECT INTO statement to create and populate a new
table with the results of a SELECT query. SELECT INTO cannot be used to insert
rows into an existing table. A new table is created, with a schema defined by the
columns in the SELECT list. Each column in the new table will have the same name,
data type, and nullability as the corresponding column (or expression) in the SELECT
list.

To use SELECT INTO, add INTO <new_target_table_name> in the SELECT clause
of the query, just before the FROM clause.

INTO clause (Transact-SQL)

http://aka.ms/qae4zn

SELECT column1

, column2

 …

INTO NewTable FROM OldTable

http://aka.ms/qae4zn

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SELECT ordered

, custid

, empid

, orderdate

, shipcity

, shipregion

, shipcountry

INTO Sales.OrdersExport FROM Sales.Orders

WHERE empid = 5;

Note: SELECT INTO creates a new table in the default FileGroup. Starting
with SQL Server 2017 you can specify the FileGroup using the ON keyword.

Note: The use of SELECT INTO requires permissions to create table objects
in the destination database. Do not try to put this clause inside a view,
because it will only work once. If a table cannot be created when the view is
activated, an error will occur after the first use of the view.

Check Your Knowledge

Select the best answer
You want to populate three columns of an existing table with data from another table in
the same database. Which of the following types of query should you use?

INSERT INTO <TableName> (<Columns,…>) VALUES (<Column Value> …)

INSERT INTO <DestinationTableName> SELECT <Columns> FROM
<SourceTableName>

INSERT INTO <DestinationTableName> EXECUTE usp_SomeStorerdProcedure

SELECT <Columns,…> INTO DestinationTableName FROM SourceTableName

SELECT <Columns,…> INTO SourceTableName FROM DestinationTableNAme

Check answer Show solution Reset

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Demonstration: Adding Data to Tables
In this demonstration, you will see how to:

• ADD data to tables using fully qualified parameters.

• ADD data to tables with partially qualified parameters.

• Understand how to use the OUTPUT clause to monitor data changes during data
INSERT.

• Understand how to insert data into a table that is produced by a stored procedure.

• Use the SELECT INTO keywords to insert data into a table.

Demonstration Steps

INSERT Data into a Table

1. Start the MT17B-WS2016-NAT, 20761C-MIA-DC, and 20761B-MIA-SQL virtual
machines, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod07\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. In the Command Prompt window press y, and then press Enter.

5. When the script has finished, press Enter.

6. Open SQL Server Management Studio, and connect to the MIA-SQL database
engine instance using Windows authentication.

7. On the File menu, point to Open, and then click Project/Solution.

8. In the Open Project dialog box, navigate to the D:\Demofiles\Mod07\Demo
folder, click Demo.ssmssln, and then click Open.

9. In Solution Explorer, expand Queries, and double-click 11 - Demonstration
A.sql.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

10. Highlight the code USE TSQL GO, and click Execute.

11. First you will populate a table with some data from a stored procedure. Highlight
the code under the comment that begins -- First try the INSERT by stored
procedure:

INSERT INTO Production.Products

 (productID

 , productname

 , supplierid

 , categoryid

 , unitprice)

EXEC Production.AddNewProducts;

Click Execute. You will receive a message saying that the procedure is not
there.

12. Highlight the code below the comment --Create a backup of the Products
with a chosen ID, and click Execute.

DROP TABLE IF EXISTS NewProducts

GO

SELECT * INTO NewProducts

FROM PRODUCTION.PRODUCTS WHERE ProductID >= 70

You are creating a new table for NewProducts where the Product ID >= 70.

13. You are also going to create a NewOrderDetails table that will contain rows for
those products that have been transferred into NewProducts. To do this,
highlight the code under the comment -- Create a backup of the Order Details
for the chosen productID, up to the point shown in the code section for the
next step below, and click Execute:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

DROP TABLE IF EXISTS NewOrderDetails

GO

SELECT * INTO NewOrderDetails

FROM SALES.OrderDetails WHERE ProductID >= 70

-- Delete the copied data from the original tables

DELETE FROM SALES.OrderDetails

OUTPUT DELETED.*

WHERE ProductID >= 70

DELETE FROM Production.Products

OUTPUT DELETED.*

WHERE ProductID >= 70

-- check that they have been transferred safely

SELECT * FROM NewProducts

SELECT * FROM NewOrderDetails

SELECT * FROM SALES.OrderDetails

WHERE productid >= 70

SELECT * FROM Production.Products

WHERE productid >= 70

14. Highlight the code below the comment Now we can put back the rows from
the NewTables, using the INSERT statement, and click Execute.

DROP PROCEDURE IF EXISTS Production.AddNewProducts

GO

CREATE PROCEDURE Production.AddNewProducts

AS

BEGIN

SELECT Productid, productname, SupplierID, CategoryID,

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Unitprice FROM NewProducts

END

When you click Execute, SQL Server creates the stored procedure that you
were missing when you tried to run it at the beginning of the demo.

15. Now you need to populate the original products table with the data within the
secondary table as if you were adding new rows. Highlight the code below the
comment Having created it, we can run it to feed the missing rows into the
Products table:

INSERT INTO Production.Products (productid, productname,

supplierid, categoryid, unitprice)

EXEC Production.AddNewProducts;

SELECT * FROM Production.Products

WHERE productid >= 70

Click Execute to transfer the rows and see that they have been transferred.

16. For the other table, you will use the SELECT INSERT statement. Highlight the
code below the comment -- The OrderDetails will be put back using INSERT
.. SELECT, and click Execute:

INSERT Sales.OrderDetails (orderid, productid, unitprice, qty,

discount)

OUTPUT INSERTED.*

SELECT * FROM NewOrderDetails

17. Having seen various ways to add data to a new or existing table, you can clean
up the database by dropping the objects used in this demo. Highlight the rest of
the code below -- Clean up the database and click Execute:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

DROP TABLE NewProducts

GO

DROP TABLE NewOrderDetails

GO

DROP PROCEDURE Production.AddNewProducts

18. Close SQL Server Management Studio, without saving any changes.

Lesson 2: Modifying and Removing Data

In this lesson, you will learn how to write queries that modify or remove rows from a
target table. You will also learn how to perform a MERGE between source and
destination tables, in which new rows are added and existing rows are modified in the
same operation.

Lesson Objectives
After completing this lesson, you will be able to:

• Write queries that modify existing rows using UPDATE.

• Write queries that modify existing rows and insert new rows using MERGE.

• Write queries that remove existing rows using DELETE.

• Remove all rows from a table using TRUNCATE.

Using UPDATE to Modify Data

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SQL Server provides the UPDATE statement to change existing data in a table or a
view. UPDATE operates on a set of rows, either defined by a condition in a WHERE
clause or defined in a join. It uses a SET clause that can perform one or more
assignments, separated by commas, to allocate new values to the target. The
WHERE clause in an UPDATE statement has the same structure as a WHERE
clause in a SELECT statement.

Note: It’s important to note that an UPDATE without a corresponding WHERE
clause, and/or a join, will target all rows that are not filtered out of the
operation. Use the UPDATE statement with caution.

UPDATE Syntax

UPDATE <TableName>

SET

 <ColumnName1> = { expression | DEFAULT | NULL }

 {,…n}

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Any column omitted from the SET clause will not be modified by the UPDATE
operation.

UPDATE Example

UPDATE Production.Products

 SET unitprice = (unitprice * 1.04)

WHERE categoryID = 1

AND discontinued = 0;

Note: In an earlier module, you learned that T-SQL supports compound
assignment operators. These can be used when assigning values to columns
using the SET statement within the update clause, as shown below:
UPDATE Production.Products
SET unitprice *= 1.04
WHERE categoryID = 1
AND discontinued = 0;

UPDATE (Transact-SQL)

http://aka.ms/sbikqm

Using MERGE to Modify Data

http://aka.ms/sbikqm

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

In database operations, there is a common need to perform a SQL MERGE
operation, in which some rows within a destination table are updated or deleted and
new rows are inserted from a source data table. The oldest versions of SQL Server,
before support for the MERGE statement was added, required multiple operations to
update and insert data into a destination table. You can use the MERGE statement to
insert, update, and even delete rows from a destination table, based on a join to a
source data set, all in a single statement.

MERGE modifies data, based on one or more conditions:

• When the source data matches the data in the target, it updates data.

• When the source data has no match in the target, it inserts data.

• When the target data has no match in the source, it deletes the target data.

Note: Because the T-SQL implementation of MERGE supports the WHEN
NOT MATCHED BY SOURCE clause, MERGE is more than just an upsert
operation—because it also deletes, it is a delupsert or something similar.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

The following code shows the general syntax of a MERGE statement:

The MERGE Example

MERGE INTO schema_name.table_name AS TargetTbl

 USING (SELECT <select_list>) AS SourceTbl

 ON (TargetTbl.col1 = SourceTbl.col1)

 WHEN MATCHED THEN

 UPDATE SET TargetTbl.col2 = SourceTbl.col2

 WHEN NOT MATCHED THEN

 INSERT (<column_list>)

 VALUES (<value_list>);

The following example shows the use of a MERGE statement to update shipping
information for existing orders, or to insert rows for new orders when no match is
found. Note that this example is for illustration only and cannot be run using the
sample database for this course.

MERGE Example

MERGE top (10) INTO Store AS Destination -- Known in

online help as Target, which is a reserved word

 USING StoreBackup AS StagingTable -- Known in online

help as the source, which is also a reserved word

 ON (Destination.BusinessEntityID =

StagingTable.BusinessEntityID)

-- the matching control columns

WHEN NOT MATCHED THEN

 INSERT (BusinessEntityID

 , Name

 , SalesPersonID

 , Demographics

 , rowguid

ModifiedDate

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 18/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

 , ModifiedDate

)

 VALUES (StagingTable.BusinessEntityID

 , StagingTable.Name

 , StagingTable.SalesPersonID

 , StagingTable.Demographics

 , StagingTable.rowguid

 , StagingTable.ModifiedDate

);

MERGE (Transact-SQL)

http://aka.ms/nbsfg7

Demonstration: Manipulating Data Using the UPDATE and
DELETE Statements and MERGING Data Using Conditional
DML
In this demonstration, you will see how to:

• UPDATE row and column intersections within tables.

• DELETE complete rows from within tables.

• Apply multiple data manipulation language (DML) operations by using the MERGE
statement.

• Understand how to use the OUTPUT clause to monitor data changes during DML
operations.

• Understand how to access prior and current data elements, in addition to showing
the DML operation performed.

Demonstration Steps

Update and Delete Data in a Table

1. Start the MT17B-WS2016-NAT, 20761C-MIA-DC, and 20761B-MIA-SQL virtual

http://aka.ms/nbsfg7

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

machines, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod07\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. In the Command Prompt window press y, and then press Enter.

5. When the script has finished, press Enter.

6. Start SQL Server Management Studio, and connect to the MIA-SQL database
engine instance using Windows authentication.

7. On the File menu, point to Open, and then click Project/Solution.

8. In the Open Project dialog box, navigate to the D:\Demofiles\Mod07\Demo
folder, click Demo.ssmssln, and then click Open.

9. In Solution Explorer, open the 21 - Demonstration B.sql script file.

10. Highlight the code USE AdventureWorks GO, and click Execute.

11. Select the code under USE AdventureWorks GO, and then click Execute.

12. Select the code under the comment Remove the copied rows from the store
table, and then click Execute.

13. Select the code under the comment Show that they have been removed, and
then click Execute.

14. Select the code under the comment Use the Merge statement to put them
back, and then click Execute.

15. Select the code under the comment SELECT * FROM Sales.Store where 1 = 0
-- used to extract column names for all columns, without cost of data
access, and then click Execute.

16. Select the code under the comment Use the Merge statement to Change the
names back, and then click Execute.

17. Select the code under the comment Ensure that the environment has been
restored to the state it was in before the changes were made, and then click

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Execute.

18. Select the code under the comment Clean up the database, and then click
Execute.

19. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

Discovery
A user cannot delete records in the Cars table by using a DELETE statement. The query
was intended to remove all pool cars that have been sold. The query used was:
DELETE
FROM Scheduling.Cars
WHERE Cars.DateSold <> NULL
What mistake did the user make?

Show solution Reset

Lesson 3: Generating Automatic Column Values

In this lesson, you will learn how to automatically generate a sequence of numbers
for use as column values.

Lesson Objectives
After completing this lesson, you will be able to:

• Describe how to use the IDENTITY property of a column to generate a sequence
of numbers when rows are inserted into a table.

• Describe how to use a sequence object in SQL Server to generate numbers that
can be used within a column, in one or more tables.

Using IDENTITY

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 21/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

You may need to automatically generate sequential values for a column in a table.
SQL Server provides two mechanisms for generating values:

• IDENTITY property, for all versions of SQL Server.

• Sequence object in SQL Server 2012 and later.

Each mechanism can be used to provide sequential numbers when rows are inserted
into a table. With the sequence object, the number variable can be used efficiently in
multiple tables.

To use the IDENTITY property, define a column using a numeric data type with a
scale of 0—meaning whole numbers only—and include the IDENTITY keyword.

An optional seed (starting value), and an increment (step value) can also be
specified. Leaving out the seed and increment will set them both to 1.

Only one column in a table may have the IDENTITY property set; it is customary for it
to be an alternate primary key.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 22/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

IDENTITY Example

CREATE TABLE Employee

(

 EmployeeID int IDENTITY(100, 10) NOT NULL

, …

)

When an IDENTITY property is defined on a column, INSERT statements against the
table do not reference the IDENTITY column. SQL Server will generate a value using
the next available value for the column. If a value must be explicitly assigned to an
IDENTITY column, the SET IDENTITY INSERT statement must be executed to
override the default behavior of the IDENTITY column.

For more information, see SET IDENTITY_INSERT (Transact-SQL) in Microsoft
Docs:

SET IDENTITY_INSERT (Transact-SQL)

http://aka.ms/l4wavg

When a value is assigned to a column by the IDENTITY property, the value may be
retrieved like any other value in a column. Values generated by the IDENTITY
property are unique within a table. However, without a constraint on the column (such
as a PRIMARY KEY or UNIQUE constraint), uniqueness is not enforced after the
value has been generated.

To return the most recently assigned value within the same session and scope, such
as a stored procedure, use the SCOPE_IDENTITY() function. The legacy
@@IDENTITY function will return the last value generated during a session, but it
does not distinguish scope. You can use SCOPE_IDENTITY() for most purposes.

To reset the IDENTITY property by assigning a new seed, use the DBCC
CHECKIDENT statement.

http://aka.ms/l4wavg

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 23/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

For more information, see DBCC CHECKIDENT (Transact-SQL) in Microsoft Docs:

DBCC CHECKIDENT (Transact-SQL)

http://aka.ms/g3mejh

IDENTITY_CACHE

A new option in SQL Server 2017 allows you to enable or disable the identity cache.
This is on by default, and improves the performance of INSERT statement for tables
with identity columns.

Set the IDENTITY_CACHE to OFF if you want to avoid gaps in the numbering when
a server restarts or fails over to another server. Note that gaps can occur in the
numbering for other reasons.

IDENTITY_CACHE

ALTER DATABASE SCOPED CONFIGURATION SET IDENTITY_CACHE=ON;

For more information about IDENTITY_CACHE, see Microsoft Docs:

ALTER DATABASE SCOPED CONFIGURATION (Transact-SQL)

https://aka.ms/Imdlno

Check Your Knowledge

Select the best answer
You are using an IDENTITY column to store the sequence in which orders were placed
in a given year. It is a new year and you want to start the count again from 1. Which of
the following statements should you use?

http://aka.ms/g3mejh
https://aka.ms/Imdlno

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 24/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

OrderSequence int IDENTITY(1,1) NOT NULL

SET IDENTITY INSERT

SCOPE_IDENTITY()

DBCC CHECKIDENT

CREATE SEQUENCE

Check answer Show solution Reset

Using Sequences

As you have learned, the IDENTITY property is used to generate a sequence of
values for a column within a table. However, the IDENTITY property is not suitable for
coordinating values across multiple tables within a database. Database
administrators and developers need to create tables of numbers manually to provide
a pool of sequential values across tables.

SQL Server 2012 provides the new sequence object, an independent database
object that is more flexible than the IDENTITY property, and can be referenced by
multiple tables within a database. The sequence object is created and managed with
typical data definition language (DDL) statements such as CREATE, ALTER, and

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 25/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

DROP. SQL Server provides a command for retrieving the next value in a sequence,
such as within an INSERT statement or a default constraint in a column definition.

To define a sequence, use the CREATE SEQUENCE statement, optionally supplying
the data type (must be an integer type or decimal/numeric with a scale of 0), the
starting value, an increment value, a maximum value, and other options related to
performance.

For more information, see CREATE SEQUENCE (Transact-SQL) in Microsoft Docs:

CREATE SEQUENCE (Transact-SQL)

http://aka.ms/lquwo6

To retrieve the next available value from a sequence, use the NEXT VALUE FOR
function. To return a range of multiple sequence numbers in one step, use the system
procedure sp_sequence_get_range.

SEQUENCE Example

CREATE SEQUENCE dbo.demoSequence

 AS INT

 START WITH 1

 INCREMENT BY 1;

GO

CREATE TABLE dbo.tblDemo

 (SeqCol int PRIMARY KEY,

 ItemName nvarchar(25) NOT NULL);

GO

INSERT

 INTO dbo.tblDemo (SeqCol,ItemName)

 VALUES (NEXT VALUE FOR dbo.demoSequence,

'Item');

GO

http://aka.ms/lquwo6

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 26/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

When you use a select statement against the table, you will see that a sequence
value is inserted for the new row.

Lab: Using DML to Modify Data

Scenario

You are a database developer for Adventure Works and need to create DML
statements to update data in the database to support the website development team.
The team need T-SQL statements that they can use to carry out updates to data,
based on actions performed on the website. You will supply template DML
statements that they can modify to their specific requirements.

Objectives

After completing this lab, you will be able to:

• Insert records.

• Update and delete records.

Lab Setup

Estimated Time: 30 minutes

Virtual machine: 20761C-MIA-SQL

User name: ADVENTUREWORKS\STUDENT

Password: Pa55w.rd

Exercise 1: Inserting Records with DML

Scenario

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 27/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

You need to add a new employee to the TempDB.Hr.Employee table and test the
required T-SQL code. You can then pass the T-SQL code to the human resources
system’s web developers, who are creating a web form to simplify this task. You also
want to add all potential customers to the Customers table to consolidate those
records.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Insert a Row

3. Insert a Row with a SELECT Statement As the Data Provider

Result: After successfully completing this exercise, you will have one new
employee and three new customers.

Exercise 2: Update and Delete Records Using DML

Scenario

You want to update the use of contact titles in the database to match the most
commonly-used term in the company—making searches more straightforward. You
also want to remove the three potential customers who have been added to the
Customers table.

The main tasks for this exercise are as follows:

1. Update Rows

2. Delete Rows

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 28/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After successfully completing this exercise, you will have updated all the
records in the Customers table that have a city of Berlin and a contacttitle of Sales
Representative, to now have a contacttitle of Sales Consultant. You will also have
deleted the three records in the PotentialCustomers table, which have already
been added to the Customers table.

Review Question(s)

Check Your Knowledge

Discovery
What attributes of the source columns are transferred to a table created with a SELECT
INTO query?

Show solution Reset

Check Your Knowledge

Discovery
The presence of which constraint prevents TRUNCATE TABLE from executing
successfully?

Show solution Reset

Module Review and Takeaways

In this module, you have learned how to:

• Write T-SQL statements that insert column values into rows within the tables.

• Write T-SQL statements that modify values in columns, within rows, within tables.

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 29/29

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Write T-SQL statements that remove existing rows from tables.

• Appreciate the importance of the WHERE clause when using data modification
language (DML).

• Appreciate T-SQL statements that automatically generate values for columns and
how this affects you when using DML.

• Understand the use of the MERGE statement to compare and contrast two tables
and direct different DML statements, based on their content comparisons.

Common Issues and Troubleshooting Tips

Common Issue Troubleshooting Tip

You are partway through the exercises and
want to start again from the beginning. You
run the setup script within the solution and
receive lots of error messages. This might
occur if you have tried to execute the setup
script without running the cleanup script to
remove any changes you might have made
during the lab.

Please see Student Companion Content for this course.

