
4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 1/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Module 9: Grouping and Aggregating Data

Contents:

Module Overview

Lesson 1: Using Aggregate Functions

Lesson 2: Using the GROUP BY Clause

Lesson 3: Filtering Groups with HAVING

Lab: Grouping and Aggregating Data

Module Review and Takeaways

Module Overview

In addition to row-at-a-time queries, you may need to summarize data to analyze it.
Microsoft® SQL Server® provides built-in functions that can aggregate, or
summarize, information across multiple rows. In this module, you will learn how to
use aggregate functions. You will also learn how to use the GROUP BY and HAVING
clauses to break up the data into groups for summarizing, and to filter the resulting
groups.

Objectives

After completing this lesson, you will be able to:

• List the built-in aggregate functions provided by SQL Server.

• Write queries that use aggregate functions in a SELECT list to summarize all the
rows in an input set.

• Describe the use of the DISTINCT option in aggregate functions.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 2/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Write queries using aggregate functions that handle the presence of NULLs in
source data.

Lesson 1: Using Aggregate Functions

In this lesson, you will learn how to use built-in functions to aggregate, or summarize,
data in multiple rows. SQL Server provides functions such as SUM, MAX, and AVG to
perform calculations that take multiple values and return a single result.

Lesson Objectives
After completing this lesson, you will be able to:

• List the built-in aggregate functions provided by SQL Server.

• Write queries that use aggregate functions in a SELECT list to summarize all the
rows in an input set.

• Describe the use of the DISTINCT option in aggregate functions.

• Write queries using aggregate functions that handle the presence of NULLs in
source data.

Working with Aggregate Functions

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 3/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

So far in this course, you have learned how to operate on a row at a time, using a
WHERE clause to filter rows, adding computed columns to a SELECT list, and
processing across columns, but within each row.

You may also need to perform analysis across rows, such as counting rows that meet
your criteria, or summarizing total sales for all orders. To accomplish this, you will use
aggregate functions capable of operating on multiple rows simultaneously.

Many aggregate functions are provided in SQL Server. In this course, you will learn
about common functions such as SUM, MIN, MAX, AVG, and COUNT.

When working with aggregate functions, you need to consider the following:

• Aggregate functions return a single (scalar) value and can be used in SELECT
statements where a single expression is used, such as SELECT, HAVING, and
ORDER BY clauses.

• Aggregate functions ignore NULLs, except when using COUNT(*). You will learn
more about this later in the lesson.

• Aggregate functions in a SELECT list do not generate a column alias. You may
wish to use the AS clause to provide one.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 4/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

• Aggregate functions in a SELECT clause operate on all rows passed to the
SELECT phase. If there is no GROUP BY clause, all rows will be summarized, as
in the slide above. You will learn more about GROUP BY in the next lesson.

To extend beyond the built-in functions, SQL Server provides a mechanism for user-
defined aggregate functions via the .NET Common Language Runtime (CLR).

For more information on other built-in aggregate functions, see Microsoft Docs:

Aggregate Functions (Transact-SQL)

http://aka.ms/wq6lku

Built-in Aggregate Functions

SQL Server provides many built-in aggregate functions. Commonly used functions
include:

Function Name Syntax Description

SUM SUM(<expression>) Totals all the non-NULL numeric values in a column.

http://aka.ms/wq6lku

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 5/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Function Name Syntax DescriptionAVG AVG(<expression>) Averages all the non-NULL numeric values in a
column (sum/count).

MIN MIN(<expression>) Returns the largest number, earliest date/time, or
first-occurring string (according to collation sort
rules).

MAX MAX(<expression>) Returns the largest number, latest date/time, or last-
occurring string (according to collation sort rules).

COUNT or
COUNT_BIG

COUNT(*) or
COUNT(<expression>)

With (*), counts all rows, including those with NULL
values. When a column is specified as <expression>,
returns count of non-NULL rows for that column.
COUNT returns an int; COUNT_BIG returns a
big_int.

This lesson only covers common aggregate functions. For information on other built-
in aggregate functions, see Microsoft Docs:

Aggregate Functions (Transact-SQL)

http://aka.ms/wq6lku

Aggregate Example

SELECT AVG(unitprice) AS avg_price,

 MIN(qty)AS min_qty,

 MAX(discount) AS max_discount

FROM Sales.OrderDetails;

Note that the above example does not use a GROUP BY clause. Therefore, all rows
from the Sales.OrderDetails table will be summarized by the aggregate formulas in
the SELECT clause.

The results:

http://aka.ms/wq6lku

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 6/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

avg_price min_qty max_discount

--------- ------- ------------

26.2185 1 0.250

When using aggregates in a SELECT clause, all columns referenced in the SELECT
list must be used as inputs for an aggregate function, or be referenced in a GROUP
BY clause.

Partial Aggregate Error

SELECT orderid, AVG(unitprice) AS avg_price, MIN(qty)AS min_qty,

MAX(discount) AS max_discount

FROM Sales.OrderDetails;

This returns:

Msg 8120, Level 16, State 1, Line 1

Column 'Sales.OrderDetails.orderid' is invalid in the select list

because it is not contained in either an aggregate function or the

GROUP BY clause.

Since our example is not using a GROUP BY clause, the query treats all rows as a
single group. Therefore, all columns must be used as inputs to aggregate functions.
Removing orderid from the previous example will prevent the error.

In addition to numeric data, such as the price and quantities in the previous example,
aggregate expressions can also summarize date, time, and character data. The
following examples show the use of aggregates with dates and characters:

Aggregating Character Data

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 7/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SELECT MIN(companyname) AS first_customer, MAX(companyname) AS

last_customer

FROM Sales.Customers;

Returns:

first_customer last_customer

-------------- --------------

Customer AHPOP Customer ZRNDE

Other functions may coexist with aggregate functions.

Aggregating with Functions

SELECT MIN(YEAR(orderdate))AS earliest, MAX(YEAR(orderdate)) AS

latest

FROM Sales.Orders;

Returns:

earliest latest

-------- -------

2006 2008

Using DISTINCT with Aggregate Functions

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 8/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Earlier in this course, you learned about the use of DISTINCT in a SELECT clause to
remove duplicate rows. When used with an aggregate function, DISTINCT removes
duplicate values from the input column before computing the summary value. This is
useful when summarizing unique occurrences of values, such as customers in the
TSQL orders table.

Summarizing Distinct Values

SELECT empid, YEAR(orderdate) AS orderyear,

 COUNT(custid) AS all_custs,

 COUNT(DISTINCT custid) AS unique_custs

FROM Sales.Orders

GROUP BY empid, YEAR(orderdate);

Note that the above example uses a GROUP BY clause. GROUP BY will be covered
in the next lesson. It is used here as a useful example for comparing DISTINCT and
non-DISTINCT aggregate functions.

This returns, in part:

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 9/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

empid orderyear all_custs unique_custs

--------------- --------- ------------

1 2006 26 22

1 2007 55 40

1 2008 42 32

2 2006 16 15

2 2007 41 35

2 2008 39 34

3 2006 18 16

3 2007 71 46

3 2008 38 30

Note the difference in each row between the COUNT of custid (in column 3) and the
DISTINCT COUNT in column 4. Column 3 simply returns all rows except those
containing NULL. Column 4 excludes duplicate custids (repeat customers) and
returns a count of unique customers, answering the question: “How many customers
per employee?”

Question: Could you accomplish the same output with the use of SELECT
DISTINCT?

Using Aggregate Functions with NULL

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 10/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

As you have learned in this course, it is important to be aware of the possible
presence of NULLs in your data, and of how NULL interacts with T-SQL query
components. This is also true with aggregate expressions. There are a few
considerations to be aware of:

• With the exception of COUNT used with the (*) option, T-SQL aggregate functions
ignore NULLs. This means, for example, that a SUM function will add only non-
NULL values. NULLs do not evaluate to zero.

• The presence of NULLs in a column may lead to inaccurate computations for
AVG, which will sum only populated rows and divide that sum by the number of
non-NULL rows. There may be a difference in results between AVG(<column>)
and (SUM(<column>)/COUNT(*)).

For example, the following table named t1:

C1 C2

1 NULL

2 10

3 20

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 11/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

C1 C2
3 20

4 30

5 40

6 50

Aggregating NULL Example

SELECT SUM(c2) AS sum_nonnulls,

 COUNT(*)AS count_all_rows,

 COUNT(c2)AS count_nonnulls,

 AVG(c2) AS [avg],

 (SUM(c2)/COUNT(*))AS arith_avg

FROM t1;

The result:

sum_nonnulls count_all_rows count_nonnulls avg arith_avg

------------ -------------- -------------- --- ---------

150 6 5 30 25

If you need to summarize all rows, whether NULL or not, consider replacing the
NULLs with another value that can be used by your aggregate function.

The following example replaces NULLs with 0 before calculating an average. The
table named t2 contains the following rows:

c1 c2

----------- -----------

1 1

2 10

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 12/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

3 1

4 NULL

5 1

6 10

7 1

8 NULL

9 1

10 10

11 1

12 10

Replace NULLs with Zeros Example

SELECT AVG(c2) AS AvgWithNULLs, AVG(COALESCE(c2,0)) AS

AvgWithNULLReplace

FROM dbo.t2;

This returns the following results, with a warning message:

AvgWithNULLs AvgWithNULLReplace

------------ ------------------

4 3

Warning: Null value is eliminated by an aggregate or other SET

operation.

Note: This example cannot be executed against the sample database used in
this course. You will find a script to create the table in the upcoming
demonstration.

Demonstration: Using Aggregate Functions

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 13/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

In this demonstration, you will see how to use built-in aggregate functions.

Demonstration Steps

Use Built-in Aggregate Functions

1. Ensure that the 20761C-MIA-DC and 20761C-MIA-SQL virtual machines are
both running, and then log on to 20761C-MIA-SQL as
ADVENTUREWORKS\Student with the password Pa55w.rd.

2. Run D:\Demofiles\Mod09\Setup.cmd as an administrator.

3. In the User Account Control dialog box, click Yes.

4. Start SQL Server Management Studio and connect to the MIA-SQL database
instance using Windows authentication.

5. On the File menu, point to Open, and then click Project/Solution.

6. In the Open Project dialog box, navigate to the D:\Demofiles\Mod09\Demo
folder, click Demo.ssmssln, and then click Open.

7. In Solution Explorer, expand Queries, and then double-click 11 -
Demonstration A.sql.

8. Select the code under the comment Step 1, and then click Execute.

9. Select the code under the comment Step 2a, and then click Execute.

10. Select the code under the comment Step 2b, and then click Execute.

11. Select the code under the comment Step 2c, and then click Execute.

12. Select the code under the comment Step 2d, and then click Execute.

13. Select the code under the comment Step 2e, and then click Execute.

14. Select the code under the comment Step 2f, and then click Execute.

15. Select the code under the comment Step 2g, and then click Execute.

16. Select the code under the comment Step 3a, and then click Execute.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 14/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

17. Select the code under the comment Step 3b, and then click Execute.

18. Select the code under the comment Step 3c, and then click Execute.

19. Select the code under the comment Step 3d, and then click Execute.

20. Select the code under the comment Step 3e, and then click Execute.

21. Select the code under the comment Step 3f, and then click Execute.

22. Select the code under the comment Step 3g, and then click Execute.

23. Select the code under the comment Step 3h, and then click Execute.

24. Select the code under the comment Step 3i, and then click Execute.

25. Select the code under the comment Step 4, and then click Execute.

26. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Discovery
You have the following query:
SELECT COUNT(*) AS RecordCount
FROM Sales.Products;
There are 250 records in the Products table. How many rows will be returned by this
query?

Show solution Reset

Lesson 2: Using the GROUP BY Clause

While aggregate functions are useful for analysis, you may wish to arrange your data
into subsets before summarizing it. In this lesson, you will learn how to accomplish
this using the GROUP BY clause.

Lesson Objectives

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 15/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

After completing this lesson, you will be able to:

• Write queries that separate rows into groups using the GROUP BY clause.

• Describe the role of the GROUP BY clause in the logical order of operations for
processing a SELECT statement.

• Write SELECT clauses that reflect the output of a GROUP BY clause.

• Use GROUP BY with aggregate functions.

Using the GROUP BY Clause

As you have learned, when your SELECT statement is processed, after the FROM
clause and WHERE clause (if present) have been evaluated, a virtual table is
created. The contents of the virtual table are now available for further processing.
You can use the GROUP BY clause to subdivide the results of the preceding query
phases into groups of rows.

GROUP BY Syntax

GROUP BY l 1 [l 2]

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 16/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

GROUP BY <value1> [, <value2>, …]

GROUP BY creates groups and places rows into each group as determined by
unique combinations of the elements specified in the clause.

GROUP BY Snippet

FROM SalesOrders

GROUP BY empid;

Once the GROUP BY clause has been processed and rows have been associated
with a group, subsequent phases of the query must aggregate any elements of the
source rows that do not appear in the GROUP BY list. This will have an impact on
how you write your SELECT and HAVING clauses.

To see the results of the GROUP BY clause, you will need to add a SELECT clause.

GROUP BY Example

SELECT empid, COUNT(*) AS cnt

FROM Sales.Orders

GROUP BY empid;

The result:

empid cnt

----- -----

1 123

2 96

3 127

4 156

5 42

6 67

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 17/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

6 67

7 72

8 104

9 43

(9 row(s) affected)

To learn more about GROUP BY, see SELECT - GROUP BY - Transact SQL in
Microsoft Docs:

SELECT - GROUP BY - Transact-SQL

http://aka.ms/ro266s

GROUP BY and the Logical Order of Operations

A common obstacle to becoming comfortable with using GROUP BY in SELECT
statements is understanding why the following type of error message occurs:

Msg 8120, Level 16, State 1, Line 2

Column <column_name> is invalid in the select list because it is not

contained in either an aggregate function or the GROUP BY clause.

http://aka.ms/ro266s

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 18/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

A review of the logical order of operations during query processing will help clarify
this issue.

As mentioned earlier in the course, the SELECT clause is not processed until after
the FROM, WHERE, GROUP BY, and HAVING clauses (if present) are processed.
When discussing the use of GROUP BY, it is important to remember that not only
does GROUP BY precede SELECT, but it also replaces the results of the FROM and
WHERE clauses with its own results. The final outcome of the query will only return
one row per qualifying group (if a HAVING clause is present). Therefore, any
operations performed after GROUP BY, including SELECT, HAVING, and ORDER
BY, are performed on the groups, not the original detail rows. Columns in the
SELECT list, for example, must return a scalar value per group. This may include the
column(s) being grouped on, or aggregate functions being performed on, each group.

GROUP BY Example

SELECT empid, COUNT(*) AS cnt

FROM Sales.Orders

GROUP BY empid;

This returns:

empid count

----- -----

1 123

2 96

3 127

4 156

5 42

6 67

7 72

8 104

9 43

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 19/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Missing GROUP BY Value

SELECT empid, orderdate, COUNT(*) AS cnt

FROM Sales.Orders

GROUP BY empid;

This returns:

Msg 8120, Level 16, State 1, Line 1

Column 'Sales.Orders.orderdate' is invalid in the select list

because it is not contained in either an aggregate function or the

GROUP BY clause.

Correct GROUP BY Example

SELECT empid, YEAR(orderdate) AS orderyear, COUNT(*) AS cnt

FROM Sales.Orders

GROUP BY empid, YEAR(orderdate)

ORDER BY empid, YEAR(orderdate);

This returns (in part):

empid orderyear count

----- --------- -----

1 2006 26

1 2007 55

1 2008 42

2 2006 16

2 2007 41

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 20/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

The net effect of this behavior is that you cannot combine a view of summary data
with the detailed source date, using the T-SQL tools you have learned about so far.
You will learn some approaches to solving the problem later in this course.

For more information about troubleshooting GROUP BY errors, see:

Troubleshooting GROUP BY Errors

http://aka.ms/yi931j

GROUP BY Workflow

Initially, the WHERE clause is processed followed by the GROUP BY. The slide
shows the results of the WHERE clause, followed by the GROUP BY being
performed on these results.

Source Queries

SELECT SalesOrderID, SalesPersonID, CustomerID

FROM Sales.SalesOrderHeader;

http://aka.ms/yi931j

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 21/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SELECT SalesOrderID, SalesPersonID, CustomerID

FROM Sales.SalesOrderHeader

WHERE CustomerID IN (29777, 30010);

SELECT SalesPersonID, COUNT(*)

FROM Sales.SalesOrderHeader

WHERE CustomerID IN (29777, 30010)

GROUP BY SalesPersonID;

Using GROUP BY with Aggregate Functions

As you have seen, if you use a GROUP BY clause in a T-SQL query, all columns
listed in the SELECT clause must either be used in the GROUP BY clause itself, or
be inputs to aggregate functions operating on each group.

You have seen the use of the COUNT function in conjunction with GROUP BY
queries.

GROUP BY with Aggregate Example

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 22/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

SELECT productid, MAX(qty) AS largest_order

FROM Sales.OrderDetails

GROUP BY productid;

This returns (in part):

productid largest_order

----------- -------------

23 70

46 60

69 65

29 80

75 120

Note: The qty column, used as an input to the MAX function, is not used in
the GROUP BY clause. This illustrates that, even though the detail rows
returned by the FROM ... WHERE phase are lost to the GROUP BY phase,
the source columns are still available for aggregation.

Demonstration: Using GROUP BY
In this demonstration, you will see how to use the GROUP BY clause.

Demonstration Steps

Use the GROUP BY Clause

1. In Solution Explorer, open the 21 - Demonstration B.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2a, and then click Execute.

4. Select the code under the comment Step 2b, and then click Execute.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 23/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

5. Select the code under the comment Step 3, and then click Execute.

6. Select the code under the comment Step 4a, and then click Execute.

7. Select the code under the comment Step 4b, and then click Execute.

8. Keep SQL Server Management Studio open for the next demonstration.

Check Your Knowledge

Select the best answer
You are writing the following T-SQL query to find out how many employees work in each
department in your organization:
SELECT d.DepartmentID, d.DepartmentName, COUNT(e.EmployeeID) AS
EmployeeCount
FROM HumanResources.Departments AS d
INNER JOIN HumanResources.Employees AS e
ON d.DepartmentID = e.DepartmentID
GROUP BY
Which columns should be included in the GROUP BY clause?

All Columns

EmployeeCount

DepartmentID, DepartmentName

DepartmentID

Check answer Show solution Reset

Lesson 3: Filtering Groups with HAVING

When you have created groups with a GROUP BY clause, you can further filter the
results. The HAVING clause acts as a filter on groups, much like the WHERE clause
acts as a filter on rows returned by the FROM clause. In this lesson, you will learn
how to write a HAVING clause and understand the differences between HAVING and
WHERE.

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 24/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Lesson Objectives
After completing this lesson, you will be able to:

• Write queries that use the HAVING clause to filter groups.

• Compare HAVING to WHERE.

• Choose the appropriate filter for a scenario: WHERE or HAVING.

Filtering Grouped Data Using the HAVING Clause

If a WHERE clause and a GROUP BY clause are present in a T-SQL SELECT
statement, the HAVING clause is the fourth phase of logical query processing:

Logical Order Phase Comments

5 SELECT

1 FROM

2 WHERE Operates on rows

3 GROUP BY Creates groups

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 25/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Logical Order Phase Comments
4 HAVING Operates on groups

6 ORDER BY

A HAVING clause enables you to create a search condition, conceptually similar to
the predicate of a WHERE clause, which then tests each group returned by the
GROUP BY clause.

GROUP BY Without HAVING Clause

SELECT custid, COUNT(*) AS count_orders

FROM Sales.Orders

GROUP BY custid;

Returns the groups, with the following message:

(89 row(s) affected)

GROUP BY with HAVING Clause

SELECT custid, COUNT(*) AS count_orders

FROM Sales.Orders

GROUP BY custid

HAVING COUNT(*) >= 10;

Returns the groups with the following message:

(28 row(s) affected)

Note: Remember that HAVING is processed before the SELECT clause, so
any column aliases created in a SELECT clause are not available to the

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 26/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

HAVING clause.

HAVING (Transact-SQL)

http://aka.ms/wsrrp0

Compare HAVING to WHERE

While both HAVING and WHERE clauses filter data, it is important to remember that
WHERE operates on rows returned by the FROM clause. If a GROUP BY ... HAVING
section exists in your query following a WHERE clause, the WHERE clause will filter
rows before GROUP BY is processed—potentially limiting the groups that can be
created.

A HAVING clause is processed after GROUP BY and only operates on groups, not
detail rows. To summarize:

• A WHERE clause controls which rows are available to the next phase of the query.

• A HAVING clause controls which groups are available to the next phase of the
query.

http://aka.ms/wsrrp0

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 27/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Note: WHERE and HAVING clauses are not mutually exclusive.

You will see a comparison between WHERE and HAVING in the next demonstration.

Demonstration: Filtering Groups with HAVING
In this demonstration, you will see how to filter grouped data using the HAVING
clause.

Demonstration Steps

Filter Grouped Data Using the HAVING Clause

1. In Solution Explorer, open the 31 - Demonstration C.sql script file.

2. Select the code under the comment Step 1, and then click Execute.

3. Select the code under the comment Step 2a, and then click Execute.

4. Select the code under the comment Step 2b, and then click Execute.

5. Select the code under the comment Step 2c, and then click Execute. Note the
error message.

6. Select the code under the comment Step 2d, and then click Execute.

7. Select the code under the comment Step 2e, and then click Execute.

8. Select the code under the comment Step 2f, and then click Execute.

9. Select the code under the comment Step 2g, and then click Execute.

10. Select the code under the comment Step 2h, and then click Execute.

11. Select the code under the comment Step 2i, and then click Execute.

12. Close SQL Server Management Studio without saving any files.

Check Your Knowledge

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 28/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Discovery
You are writing a query to count the number of orders placed for each product. You
have the following query:
SELECT p.ProductName, COUNT(*) AS OrderCount
FROM Sales.Products AS p
JOIN Sales.OrderItems AS o
ON p.ProductID = o.ProductID
GROUP BY p.ProductName;
You want to change the query to return only products that cost more than $10. Should
you add a HAVING clause or a WHERE clause?

Show solution Reset

Lab: Grouping and Aggregating Data

Scenario

You are an Adventure Works business analyst, who will be writing reports using
corporate databases stored in SQL Server. You have been given a set of business
requirements for data and you will write T-SQL queries to retrieve it from the
databases. You will need to perform calculations upon groups of data and filter
according to the results.

Objectives

After completing this lab, you will be able to:

• Write queries that use the GROUP BY clause.

• Write queries that use aggregate functions.

• Write queries that use distinct aggregate functions.

• Write queries that filter groups with the HAVING clause.

Lab Setup

Estimated Time: 60 minutes

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 29/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Virtual machine: 20761C-MIA-SQL

User name: ADVENTUREWORKS\Student

Password: Pa55w.rd

Exercise 1: Writing Queries That Use the GROUP BY Clause

Scenario

The sales department want to create additional upsell opportunities from existing
customers. The staff need to analyze different groups of customers and product
categories, depending on several business rules. Based on these rules, you will write
SELECT statements to retrieve the needed rows from the Sales.Customers table.

The main tasks for this exercise are as follows:

1. Prepare the Lab Environment

2. Write a SELECT Statement to Retrieve Different Groups of Customers

3. Add an Additional Column From the Sales.Customers Table

4. Write a SELECT Statement to Retrieve the Customers with Orders for Each
Year

5. Write a SELECT Statement to Retrieve Groups of Product Categories Sold in a
Specific Year

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 30/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Result: After this exercise, you should be able to use the GROUP BY clause in
the T-SQL statement.

Exercise 2: Writing Queries That Use Aggregate Functions

Scenario

The marketing department wants to launch a new campaign, so the staff need to gain
a better insight into the existing customers’ buying behavior. You should create
different sales reports, based on the total and average sales amount per year and per
customer.

The main tasks for this exercise are as follows:

1. Write a SELECT statement to Retrieve the Total Sales Amount Per Order

2. Add Additional Columns

3. Write a SELECT Statement to Retrieve the Sales Amount Value Per Month

4. Write a SELECT Statement to List All Customers with the Total Sales Amount
and Number of Order Lines Added

Exercise 3: Writing Queries That Use Distinct Aggregate Functions

Scenario

The marketing department want to have some additional reports that display the
number of customers who made any order in a specific time period and the number

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 31/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

of customers based on the first letter in the contact name.

The main tasks for this exercise are as follows:

1. Modify a SELECT Statement to Retrieve the Number of Customers

2. Write a SELECT Statement to Analyze Segments of Customers

3. Write a SELECT Statement to Retrieve Additional Sales Statistics

Result: After this exercise, you should have an understanding of how to apply a
DISTINCT aggregate function.

Exercise 4: Writing Queries That Filter Groups with the HAVING
Clause

Scenario

The sales and marketing departments were satisfied with the reports you provided to
analyze customers’ behavior. Now they would like to have the results filtered, based
on the total sales amount and number of orders. So, in the final exercise, you will
learn how to filter the result, based on aggregated functions, and learn when to use
the WHERE and HAVING clauses.

The main tasks for this exercise are as follows:

1. Write a SELECT Statement to Retrieve the Top 10 Customers

2. Write a SELECT Statement to Retrieve Specific Orders

3. Apply Additional Filtering

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 32/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

4. Retrieve the Customers with More Than 25 Orders

Result: After this exercise, you should have an understanding of how to use the
HAVING clause.

Module Review and Takeaways

In this lesson, you have learned how to:

• List the built-in aggregate functions provided by SQL Server.

• Write queries that use aggregate functions in a SELECT list to summarize all the
rows in an input set.

• Describe the use of the DISTINCT option in aggregate functions.

• Write queries using aggregate functions that handle the presence of NULLs in
source data.

Review Question(s)

Check Your Knowledge

Discovery
What is the difference between the COUNT function and the COUNT_BIG function?

Show solution Reset

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

Detailed Steps ▼

4/21/2019 Bookshelf

https://skillpipe.com/#/reader/book/aa1b84c9-cba8-4f5b-9726-e95c4f3769d6 33/33

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document belongs to Sebastian Amihaesie.

sebastian.amihaesie@gmail.com

No unauthorized copies allowed!

This document bs

Check Your Knowledge

Discovery
Can a GROUP BY clause include more than one column?

Show solution Reset

Check Your Knowledge

Discovery
In a query, can a WHERE clause and a HAVING clause filter on the same column?

Show solution Reset

